1. Alibakhshi, A., Nazarian Firouzabadi, F. and Ismaili, A. (2018). Expression and antimicrobial activity analysis of a Dermaseptin B1 antibacterial peptide in tobacco hairy roots. Plant Protection (Scientific Journal of Agriculture), 41(3): 87-96 (In persion). 2. Barra, D. and Simmaco, M. (1995). Amphibian skin: a promising resource for antimicrobial peptides. Trends in Biotechnology, 13: 205-209. [ DOI:10.1016/S0167-7799(00)88947-7] 3. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [ DOI:10.1016/0003-2697(76)90527-3] 4. Cao, H., Li, X. and Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences, 95: 6531-6536. [ DOI:10.1073/pnas.95.11.6531] 5. Conlon, J.M., Kolodziejek, J. and Nowotny, N. (2004). Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1696: 1-14. [ DOI:10.1016/j.bbapap.2003.09.004] 6. Flavia Cancado Viana, J., Campos Dias, S., Luiz Franco, O. and Lacorte, C. (2013). Heterologous production of peptides in plants: fusion proteins and beyond. Current Protein and Peptide Science, 14: 568-579. [ DOI:10.2174/13892037113149990072] 7. Fujikawa, T., Sakaguchi, A., Nishizawa, Y., Kouzai, Y., Minami, E., Yano, S., Koga, H., Meshi, T. and Nishimura, M. (2012). Surface α-1, 3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathogens, 8: e1002882. [ DOI:10.1371/journal.ppat.1002882] 8. Hajiahmadi, Z., Shirzadian-Khorramabad, R., Kazemzad, M. and Sohani, M.M. (2017). Expression of cryIAb Driven by a Wound Inducible Promoter (MPI) in Tomato to Enhance Resistance to Tuta absoluta. Plant Genetic Researches, 4(2): 1-16 (In Persian). [ DOI:10.29252/pgr.4.2.1] 9. Holaskova, E., Galuszka, P., Frebort, I. and Oz, M.T. (2015). Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnology Advances, 33: 1005-1023. [ DOI:10.1016/j.biotechadv.2015.03.007] 10. Hunter, P.A., Darby, G., Russell, N.J. and Russell, A.D. (1995). Fifty Years of Antimicrobials: Past Perspectives and Future trends. The Press Syndicate of the University Cambridge; New York, USA. 11. Khademi, M., Nazarian-Firouzabadi, F. and Ismaili, A. (2019a). Cloning and expression of two new recombinant antimicrobial dermaseptin b1 peptides in tobacco to control the growth of human bacterial pathogens. Journal Mazandaran University, 29(176): 47-60 (In persion). 12. Khademi, M., Nazarian-Firouzabadi, F., Ismaili, A. and shirzadian-khorramabad, R. (2019b). Targeting microbial pathogens by expression of new recombinant dermaseptin peptides in tobacco Microbiologyopen online, Special issue: 1-11. [ DOI:10.1002/mbo3.837] 13. Latgé, J.P. and Beauvais, A. (2014). Functional duality of the cell wall. Current Opinion in Microbiology, 20: 111-117. [ DOI:10.1016/j.mib.2014.05.009] 14. Latgé, J.P. (2010). Tasting the fungal cell wall. Cellular Microbiology, 12: 863-872. [ DOI:10.1111/j.1462-5822.2010.01474.x] 15. Li, Z., Zhou, M., Zhang, Z., Ren, L., Du, L., Zhang, B., Xu, H. and Xin, Z. (2011). Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional & Integrative Genomics, 11: 63-70. [ DOI:10.1007/s10142-011-0211-x] 16. Osusky, M., Osuska, L., Hancock, R.E., Kay, W.W. and Misra, S. (2004). Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Research, 13: 181-190. [ DOI:10.1023/B:TRAG.0000026076.72779.60] 17. Oyama, L.B., Crochet, J.A., Edwards, J.E., Girdwood, S.E., Cookson, A.R., Fernandez-Fuentes, N., Hilpert, K., Golyshin, P.N., Golyshina, O.V. and Privé, F. (2017). Buwchitin: A Ruminal Peptide with antimicrobial potential against Enterococcus faecalis. Frontiers in Chemistry, 5: 51. [ DOI:10.3389/fchem.2017.00051] 18. Phoenix, D.A., Harris, F., Mura, M. and Dennison, S.R. (2015). The increasing role of phos-phatidylethanolamine as a lipid receptor in the action of host defence peptides. Progress in Lipid Research, 59: 26-37. [ DOI:10.1016/j.plipres.2015.02.003] 19. Nazarian-Firouzabadi, F. (2014). Manipulation of starch biosynthasis and in planta biopolymer production. Plant Genetic Researches, 4(2): 1-14 (In Persian). [ DOI:10.29252/pgr.1.2.1] 20. Sohlenkamp, C. and Geiger, O. (2016). Bacterial membrane lipids: diversity in structuresand pathways. FEMS Microbiology Letters, 40: 133-159. [ DOI:10.1093/femsre/fuv008] 21. Stone, S.L. and Gifford, D.J. (1997). Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early-seedling growth. I. Storage protein reserves. International Journal of Plant Sciences, 158: 727-737. [ DOI:10.1086/297484] 22. Teixeira, V., Feio, M.J. and Bastos, M. (2012). Role of lipids in the interaction of antimicro-bial peptides with membranes. Progress in Lipid Research, 51: 149-177. [ DOI:10.1016/j.plipres.2011.12.005] 23. Thomma, B.P., Nürnberger, T. and Joosten, M.H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell Online, 23: 4-15. [ DOI:10.1105/tpc.110.082602] 24. Van den Burg, H.A., Harrison, S.J., Joosten, M.H., Vervoort, J. and de Wit, P.J. (2006). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interactions, 19: 1420-1430. [ DOI:10.1094/MPMI-19-1420] 25. Van den Burg, H.A., Spronk, C.A., Boeren, S., Kennedy, M.A., Vissers, J.P., Vuister, G.W., de Wit, P.J. and Vervoort, J. (2004). Binding of the Avr4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions. Journal of Biological Chemistry, 249: 16786-16796. [ DOI:10.1074/jbc.M312594200] 26. Vidaver, A.K. (2002). Uses of antimicrobials in plant agriculture. Clinical Infectious Diseases, 34: S107-S110. [ DOI:10.1086/340247] 27. Vlietinck, A. (1991). Screening methods for antibacterial and antiviral agents from higher plants. Methods in Plant Biochemistry, 6: 47-69. 28. Wohlkönig, A., Huet, J., Looze, Y. and Wintjens, R. (2010). Structural relationships in the lysozyme Superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS One, 5: e15388. [ DOI:10.1371/journal.pone.0015388] 29. Yan, R., Hou, J., Ding, D., Guan, W., Wang, C., Wu, Z. and Li, M. (2008). In vitro antifungal activity and mechanism of action of chitinase against four plant pathogenic fungi. Journal of Basic Microbiology, 48: 293-301. [ DOI:10.1002/jobm.200700392] 30. Yokoyama, S., Iida, Y., Kawasaki, Y., Minami, Y., Watanabe, K. and Yagi, F. (2009). The chitin‐binding capability of Cy‐AMP1 from cycad is essential to antifungal activity. Journal of Peptide Science, 15: 492-497. [ DOI:10.1002/psc.1147] 31. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415: 389-395. [ DOI:10.1038/415389a] 32. Zasloff, M. (2006). Defending the epithelium. Nature Medicine, 12: 607-608. [ DOI:10.1038/nm0606-607]
|