[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 6, Issue 2 (2020) ::
pgr 2020, 6(2): 21-32 Back to browse issues page
Comparison of Promoter Sequences of Flowering Control Genes, FT1 and Three Versions of VIN3, in Susceptible and Resistant Sugar Beet Genotypes to Bolting
Azadeh Souri , Asghar Mirzaie-asl * , Leila Khodaei , Mohammad reza Abdollahi
Department of Agricultural Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran , a.mirzaie@basu.ac.ir
Abstract:   (12962 Views)
Autumn sowing of sugar beet is a suitable way in sustainable agriculture. Bolting is an undesirable phenomenon which reduces sugar beet yield and it is the most important limiting factor in autumn sowing of sugar beet. Identification and comparison of the sequence of flowering genes in various genotypes can help to understand the molecular mechanisms controlling bolting. In the previous studies, it was revealed that expression level of FT1 and VIN3 genes in sugar beet is associated with bolting resistance. In this study, the sequence of FT1 gene promotor and three versions of VIN3 gene promoters of sugar beet were compared in three bolting resistant and three bolting susceptible genotypes. Primer design for each gene was carried out using the DNA sequences found at the NCBI database. DNA was extracted from leaf samples growing in pots and was used as template in PCR reactions. Similar length of amplified fragments for each promoter gene in bolting susceptible and bolting resistant genotypes were selected and sequenced for more accurate assessment. There was no mutation in the FT1 gene promoter, however 624 substitution and insertion/deletion mutations were observed in the promoter of three versions of VIN3 gene. A 228-bp ins/del region was detected in the VIN3-like1 promoter. This region contains promoter elements and seems to have a control function. Comparison of detected mutations between susceptible and resistant genotypes did not show a distinct pattern for bolting.
Keywords: Sugar Beet, Bolting, Promotor, Mutation, FT1, VIN3
Full-Text [PDF 881 kb]   (1783 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abou-Elwafa, S. F., Buttner, B., Chia, T., Schulze-Buxloh, G. Hohmann, U. Mutasa-Gottgens, E., Jung, C. and Muller, A. E. (2011). Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot, 62: 3359-3374. [DOI:10.1093/jxb/erq321]
2. Alimirzaee, M., M, Mirzaie-asl, A., Abdollahi, M.R. and Ebrahimi Koolai, H. (2015). The of mRNA sequence polymorphism of flowering key genes in bolting sensitive and tolerant sugar beet genotypes. Journal of Biotechnology,Computational Biology and Bionanotechnology, 98(3):209-217. [DOI:10.5114/bta.2017.70799]
3. Bastow, R., Mylne, J. S., Lister, C., Lippman, Z., Martienssen, R. A. and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation". Nature, 427: 164-167. [DOI:10.1038/nature02269]
4. Blázquez, M., Koornneef, M. and Putterill, J. (2001). Flowering on time: genes that regulate the floral transition. EMBO reports, 2(12): 1078-1082. [DOI:10.1093/embo-reports/kve254]
5. Boudry P., Mccombie H. and Van Dijk H. (2002). Vernalization requirement of wild beet Beta vulgaris ssp maritima: among population variation and its adaptive significance. Journal of Ecology, 90, 693-703. [DOI:10.1046/j.1365-2745.2002.00704.x]
6. Ding, L., Kim, S. Y. and Michaels, S. D. (2013). FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis. Plant physiology, 163: 243-252. [DOI:10.1104/pp.113.223958]
7. FAO. (2012). FAOSTAT. http://faostat.fao.org. Accessed 10 January 2014.
8. Greb, T., Mylne, J. S., Crevillen, P., Geraldo, N., An, H., Gendall, A. R. and Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Current biology, 17: 73-78. [DOI:10.1016/j.cub.2006.11.052]
9. Hami, M. (2016). Comparison expression of photoperiod pathway Key Gene in susceptible and resistant genotypes for Bolting in Sugar Beet. Master's Thesis. Faculty of Agriculture, Bu Ali Sina University, Hamadan (In Persian).
10. Hamzaei, A. (2016). Comparison Expression of Vernalization Pathway Key Gene in susceptible and resistant genotypes for Bolting in Sugar Beet. Master's Thesis. Faculty of Agriculture, Bu Ali Sina University, Hamadan (In Persian).
11. Hébrard, C., Trap-Gentil, M.-V., Lafon-Placette, C., Delaunay, A., Joseph, C., Lefèbvre, M., Barnes, S. and Maury, S. (2013). Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting. Journal of experimental botany, 64: 651-663. [DOI:10.1093/jxb/ers363]
12. Helliwell, C. A., Wood, C. C., Robertson, M., James Peacock, W. and Dennis, E. S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high‐molecular‐weight protein complex. The Plant Journal, 46: 183-192.
13. Henderson, I. R. and Dean, C. (2004). Control of Arabidopsis flowering: the chill before the bloom. Development, 131(16): 3829-3838. [DOI:10.1242/dev.01294]
14. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 290: 344-347. [DOI:10.1126/science.290.5490.344]
15. Jung, C. and Müller, A. E. (2009). Flowering time control and applications in plant breeding. Trends in plant science, 14: 563-573. [DOI:10.1016/j.tplants.2009.07.005]
16. Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., Chory, J., Harrison, M. J. and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science, 286: 1962-1965. [DOI:10.1126/science.286.5446.1962]
17. Kim, H. J., Hyun, Y., Park, J. Y., Park, M. J., Park, M. K., Kim, M. D. and Kim, J. (2004). A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature genetics 36(2): 167-171. [DOI:10.1038/ng1298]
18. Kim, D.-H., Doyle, M.R., Sung, S. and Amasino, R.M. (2009) "Vernalization: winter and the timing of flowering in plants". Annual Review of Cell and Developmental 25: 277-299. [DOI:10.1146/annurev.cellbio.042308.113411]
19. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) "A pair of related genes with antagonistic roles in mediating flowering signals". Science 286: 1960-1962. [DOI:10.1126/science.286.5446.1960]
20. Koornneef, M., Hanhart, C. and Van der Veen, J. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics, 229: 57-66. [DOI:10.1007/BF00264213]
21. Mellor, J. (2006). It takes a PHD to read the histone code. Cell, [DOI:10.1016/j.cell.2006.06.028]
22. 126: 22-24.
23. Michaels, S. D. and Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell Online, 11: 949-956. [DOI:10.1105/tpc.11.5.949]
24. Michaels, S. D. and Amasino, R. M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell Online, 13: 935-941. [DOI:10.1105/tpc.13.4.935]
25. Searle, I. He, Y., Turck, F., Vincent, C., Fornara, F., Kröber, S., Amasino, R. A. and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development, 20: 898-912. [DOI:10.1101/gad.373506]
26. Sheldon, C. C., Burn, J. E., Perez, P. P., Metzger, J., Edwards, J. A., Peacock, W. J., Dennis, E. S. (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. The Plant Cell, 11(3): 445-458. [DOI:10.1105/tpc.11.3.445]
27. Shojaei, E, Mirzaei-asl A, Mahmoudi, S.B, Nazeri, S. (2017). Identification of sugar beet flowering genes based on Arabidopsis Homologus genes. Journal of Agricultural Science and Technology, 19(3): 719-729.
28. Strange, A., Li, P., Lister, C., Anderson, J., Warthmann, N., Shindo, C., Irwin, J., Nordborg, M. and Dean, C. (2011). Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS One, 6: e19949. [DOI:10.1371/journal.pone.0019949]
29. Sung, S. and Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427(6970): 159-164. [DOI:10.1038/nature02195]
30. Sung, S., He, Y., Eshoo, T. W., Tamada, Y., Johnson, L., Nakahigashi, K., Goto, K., Jacobsen, S. E. and Amasino, R. M. (2006). Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature genetics, 38: 706-710. [DOI:10.1038/ng1795]
31. Sung, S., Schmitz, R. J. and Amasino, R. M. (2006). A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis". Genes & development 20: 3244-3248. [DOI:10.1101/gad.1493306]
32. Takada, S. and Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. The Plant Cell, 15(12): 2856-2865. [DOI:10.1105/tpc.016345]
33. Wood, C. C., Robertson, M., Tanner, G., Peacock, W. J., Dennis, E. S. and Helliwell, C. A. (2006). The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proceedings of the National Academy of Sciences, 103: 14631-14636. [DOI:10.1073/pnas.0606385103]
34. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. and Henikoff, S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature genetics, 39(1): 61-69. [DOI:10.1038/ng1929]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Souri A, Mirzaie-asl A, Khodaei L, Abdollahi M R. Comparison of Promoter Sequences of Flowering Control Genes, FT1 and Three Versions of VIN3, in Susceptible and Resistant Sugar Beet Genotypes to Bolting. pgr 2020; 6 (2) :21-32
URL: http://pgr.lu.ac.ir/article-1-171-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (2020) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657