[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 10, Issue 2 (2024) ::
pgr 2024, 10(2): 119-136 Back to browse issues page
Selection of drought tolerant melon genotypes using Multivariate Statistical Methods and tolerance indices
Hosein Astaraki , Mahmoud Lotfi , Sasan Aliniaeifard , Ali Izadi-Darbandi , Payman Sharifi , Hossein Ramshini *
Department of Agronomy and Plant Breeding Sciences, College of Agricultural Technology (Abouraihan), University of Tehran, Pakdasht, Iran , ramshini@ut.ac.ir
Abstract:   (833 Views)
In order to select the most tolerant genotypes of melon to drought stress, 30 landraces and cultivars were evaluated at Broujerd Agricultural Research Station in 2018. Under normal and drought stress conditions genotypes were evaluated in a randomized complete block design with three replications. Drought stress was started when fruits appeared. Based on the rate of evaporation in class A evaporation pan (normal conditions: 50 mm, stress conditions: 100 mm), irrigation was carried out. The results of this study showed that Yield under drought stress and normal conditions showed high correlations with stress tolerance indices such as MP (Mean Productivity), GMP (Geometric Mean Productivity) and STI (Suitability Tolerance Index). The broad sense hereditary under drought stress condition varied from 81% for yield per plant to 97% for the fruit lenght. Under drought stress condition, the highest percentage of genetic coefficient of variation (GCV) was observed for Weight of flesh and skin (49 percent) and the lowest for days to maturity (4 percent). Based on the PCA biplot, the genotypes of Mamaghani, Rish-baba, Garmak and Japuni melon were identified as tolerant and Mazandrani, Uzbak1 and Ginsen Makuwa were classified as sensitive to drought stress. These results could be useful for breeding purposes and the genotypes can be crossed with each other to produce segregating populations and selection of the best plants.
Keywords: Principal Component Analysis, Selection Broad Sense Heritability, Correlation
Full-Text [PDF 2120 kb]   (266 Downloads)    
Type of Study: Research | Subject: Plant genetics
Accepted: 2024/03/6
References
1. Ahmadi, G.H., Tomasyan, G., Jalal-Kamali, M.R., Khodarahami, M. and Aghaeei, M. (2010). Selection of terminal drought tolerant bread wheat genotypes via field and laboratory indices. 8st International Wheat Conference, St. Petersburg, Russia.
2. Asadi, B. Seyedi, S.M. (2021). Evaluation of Drought Tolerance Indices in Red Bean Lines. Journal of Cell Biology, 13(38): 160-168. [DOI:10.52547/jcb.13.38.160]
3. Astaraki, H., Sharifi, P. and Sheikh, F. (2020). Estimation of genotypic correlation and heritability of some of traits in faba bean genotypes using restricted maximum likelihood (REML). Plant Genetic Researches, 6(2): 111-128 (In Persian). [DOI:10.29252/pgr.6.2.111]
4. Boshagh, B., Astraki, H. and Pezashkipour, P. (2018). Evaluation of faba bean genotypes using drought tolerance indices and multivariate statistical methods. Journal of Crop Breeding, 10(27): 1-9 (In Persian). [DOI:10.29252/jcb.10.27.1]
5. Bouslama, M. and Schapaugh, W.T. (1984). Stress tolerance in soybean. I - Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24: 933-937. [DOI:10.2135/cropsci1984.0011183X002400050026x]
6. Fageria, N.K. (1985). Influence of aluminum in nutrient solutions on chemical composition in two rice cultivars at different growth stages. Plant and Soil, 85: 423-429. [DOI:10.1007/BF02220197]
7. Fernandez, G.C. (1992). Effective selection criteria for assessing plant stress tolerance. International Symposium on Adaptation of Food Crops to Temperature and Water Stress, Shanhua, Taiwan.
8. Fischer, R.A. and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5): 897-912. [DOI:10.1071/AR9780897]
9. Fischer, R.A. and Wood, J.T. (1979). Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research, 30(6): 1001-1020.‌ [DOI:10.1071/AR9791001]
10. FAO. (2022). Food and agriculture data in FAO. Retrieved December 1, 2022, from http://www.fao.org/faostat.
11. Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi, G.L. and Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77: 523-531. [DOI:10.4141/P96-130]
12. ‌Ghanbariyan, M., Abbasi Koohpayegani, J., Mozafari, J. and Sadeghian Motahar, Y. (2012). Genetic diversity of Melon (Cucumis melo L.) in National Plant Gene bank Iran. 2nd National Seminar on Biological Diversity and its impact on agriculture and the environment, Urmia, Iran (In Persian).
13. Goodarzvand Chegini, K., Fotovat, R., Bihamta, M.R., Omidi, M. and Shahnejant Boushehri, A.A. (2017). Grouping of tolerance indices and response of kabuli and desi type chickpea genotypes to drought stress. Iranian Journal of Field Crop Science, 48(3): 647-664 (In Persian).
14. Hanson, C.H., Robinson, H.G. and Comstock, R.E. (1956). Biometrical studies of yields in segregating population of Korean Lespedeza. Agronomy Journal, 48: 268-272. [DOI:10.2134/agronj1956.00021962004800060008x]
15. Hosseini, S.Z., Ismaili, A. and Sohrabi, S.S. (2019). Evaluation of drought tolerance in safflower (Carthamus tinctorius L.) under water deficit stress conditions. Plant Genetic Researches, 5(2): 55-72 (In Persian). [DOI:10.29252/pgr.5.2.55]
16. Kerje, T. and Grum, M. (2000). The origin of melon, Cucumis melo: a review of the literature. Acta Horticulturae, 510: 37-44. [DOI:10.17660/ActaHortic.2000.510.5]
17. Lan, J. (1998). Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-Occidentalis Sinica, 7: 85-87.
18. Lever, J., Krzywinski, M. and Altman, N. (2017). Points of significance: Principal component analysis. Nature methods, 14(7): 641-643 [DOI:10.1038/nmeth.4346]
19. Maleki, M., Shojaeiyan, A. and Monfared, S.R. (2018). Population structure, morphological and genetic diversity within and among melon (Cucumis melo L.) landraces in Iran. Journal of Genetic Engineering and Biotechnology, 16(2): 599-606. (In Persian).‌ [DOI:10.1016/j.jgeb.2018.08.002]
20. Moradi, H., Akbari, G.A., Khorasani, S.K. and Ramshini, H.A. (2012). Evaluation of drought tolerance in corn (Zea mays L.) new hybrids with using stress tolerance indices. European Journal of Sustainable Development, 1(3): 543-543.‌ [DOI:10.14207/ejsd.2012.v1n3p543]
21. Moosavi, S.S., Yazdi, S.B., Naghavi, M.R., Zali, A.A., Dashti, H. and Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes.‌ Desert, 7(2): 165-178.
22. Naderi, A., Majidi-Heravan, E., Hashemi-Dezfuli, A., Rezaie, A. and Nour-Mohamadi, G. (2000). Efficiency analysis of indices for tolerance to environmental stresses in field crops and introduction of a new index. Seed and Plant, 15(4): 390-402‌ (In Persian).
23. Narouirad, M., Bakhshi, B., Kohpalekani, A.J., Ghasemi, A. and Fazeli, R.M. (2020). Response of Iranian melon populations to deficit irrigation condition.‌ Journal of Horticultural Science, 34(1): 161-169 (In Persian).
24. Rosielle, A.A. and Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment. Crop science, 21(6): 943-946.‌ [DOI:10.2135/cropsci1981.0011183X002100060033x]
25. Roy, D. (2000). Plant Breeding: Analysis and Exploitation of Variation. Alpha Science International, Oxford, UK.
26. Sharifi, P., Aminpanah, H., Ebadi, A.A. and Hallajian, M.T. (2017). Classification of mutant rice (Oryza sativa L.) genotypes under drought stress conditions. Iranian Journal of Crop Sciences, 19(2): 148-164 (In Persian).
27. Shi, W., Wang, M. and Liu, Y. (2021). Crop yield and production responses to climate disasters in China. Science of the Total Environment, 750: 141147.‌ [DOI:10.1016/j.scitotenv.2020.141147]
28. Taghikhani, S., Ramshini, H., Sadat-Noori, S.A., Lotfi, M., Izadi Darbakdi, A., Sousaraei, N. and Varvani Farahani, A. (2018). SNP marker assisted selection for identification of fusarium resistant melon plants. Plant Genetic Researches, 5(1): 63-76 (In Persian). [DOI:10.29252/pgr.5.1.63]
29. Yan, W. and Kang, M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. CRC Press, Florida, USA. [DOI:10.1201/9781420040371]
30. Yan, W. and Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1): 11-20. [DOI:10.2135/cropsci2002.1100]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Astaraki H, Lotfi M, Aliniaeifard S, Izadi-Darbandi A, Sharifi P, Ramshini H. Selection of drought tolerant melon genotypes using Multivariate Statistical Methods and tolerance indices. pgr 2024; 10 (2) :119-136
URL: http://pgr.lu.ac.ir/article-1-296-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 2 (2024) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657