[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 9, Issue 2 (2023) ::
pgr 2023, 9(2): 95-108 Back to browse issues page
Investigating The Genetic Resistance of Some Iranian Chickpea (Cicer arietinum L.) Cultivars to Pursuit Herbicide
Seyyed Mohsen Sohrabi , Seyed Karim Mousavi *
Plant Protection Research Department, Lorestan Agricultural and Natural Resources, Research and Education Center, AREEO, Khorramabad, Iran , k.mousavi@areeo.ac.ir
Abstract:   (3587 Views)
Chickpea (Cicer arietinum L.) is one of the most important crops in the world. After bean and pea, chickpea is the most important cold season legume. Weeds are one of the most important threats to chickpea production worldwide. Due to the sensitivity of chickpea to herbicides, the majority of herbicides are used pre-emergence and the use of post-emergence herbicides is limited, and therefore weeds cause a significant decrease in chickpea yield. Therefore, herbicide-tolerant chickpea cultivars that have a higher flexibility for post-emergence herbicide application are needed to improve the chickpea yield. In this study, using seed bioassay and PCR method, resistance mechanism of Iranian chickpea cultivars to Pursuit herbicide was investigated. The results showed a significant genotypic and phenotypic variation among Iranian chickpea cultivars for tolerance to the Pursuit herbicide. The results did not show a difference between the target genes of Pursuit herbicide, ALS1 and ALS2, in all investigated cultivars with that of the reference sequences in the GenBank. This proves that the resistance observed in different chickpea cultivars to the herbicide Pursuit is not associated with the target site resistance mechanism and probably follows a non-target resistance mechanism. The superior genotypes of this study (Bivanij, Aksou, Mansour, TDS-Maragheh90-400 and TDS-Maragheh90-358) can be recommended to farmers and also suggested as parents to produce natural herbicide resistant chickpea plants in breeding programs.
Keywords: Resistant cultivars, Target proteins, Post-emergence herbicides, Weeds, Target site resistance
Full-Text [PDF 1286 kb]   (849 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Avila‐Garcia, W.V., Sanchez‐Olguin, E., Hulting, A.G. and Mallory‐Smith, C. (2012). Target‐site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. multiflorum). Pest Management Science, 68: 1248-1254. [DOI:10.1002/ps.3286] [PMID]
2. Beckie, H.J., Heap, I.M., Smeda, R.J. and Hall, L.M. (2000). Screening for herbicide resistance in weeds. Weed Technology, 14: 428-445. [DOI:10.1614/0890-037X(2000)014[0428:SFHRIW]2.0.CO;2]
3. Beckie, H.J. and Tardif, F.J. (2012). Herbicide cross resistance in weeds. Crop Protection, 35: 15-28. [DOI:10.1016/j.cropro.2011.12.018]
4. Beste, C. (1983) Herbicide Handbook of the Weed Science Society of America. Weed Science Society of America, KS, USA.
5. Busi, R., Vila-Aiub, M.M. and Powles, S. (2011). Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity, 106: 817-824. [DOI:10.1038/hdy.2010.124] [PMID] [PMCID]
6. Cummins, I., Bryant, D.N. and Edwards, R. (2009). Safener responsiveness and multiple herbicide resistance in the weed black‐grass (Alopecurus myosuroides). Plant Biotechnology Journal, 7: 807-820. [DOI:10.1111/j.1467-7652.2009.00445.x] [PMID]
7. Cummins, I., Cole, D.J. and Edwards, R. (1999). A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black‐grass. The Plant Journal, 18: 285-292. [DOI:10.1046/j.1365-313X.1999.00452.x] [PMID]
8. Cummins, I., Wortley, D.J., Sabbadin, F., He, Z., Coxon, C.R., Straker, H.E., Sellars, J.D., Knight, K., Edwards, L. and Hughes, D. (2013). Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences, 110: 5812-5817. [DOI:10.1073/pnas.1221179110] [PMID] [PMCID]
9. Dayan, F.E., Daga, P.R., Duke, S.O., Lee, R.M., Tranel, P.J. and Doerksen, R.J. (2010). Biochemical and structural consequences of a glycine deletion in the α-8 helix of protoporphyrinogen oxidase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804: 1548-1556. [DOI:10.1016/j.bbapap.2010.04.004] [PMID]
10. Délye, C. (2013). Unravelling the genetic bases of non‐target‐site‐based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science, 69: 176-187. [DOI:10.1002/ps.3318] [PMID]
11. Délye, C., Jasieniuk, M. and Le Corre, V. (2013). Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 29: 649-658. [DOI:10.1016/j.tig.2013.06.001] [PMID]
12. Délye, C., Menchari, Y., Michel, S. and Darmency, H. (2004). Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. Plant Physiology, 136: 3920-3932. [DOI:10.1104/pp.103.037432] [PMID] [PMCID]
13. Délye, C., Zhang, X.Q., Michel, S., Matéjicek, A. and Powles, S.B. (2005). Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiology, 137: 794-806. [DOI:10.1104/pp.104.046144] [PMID] [PMCID]
14. Dong, H., Wang, D., Bai, Z., Yuan, Y., Yang, W., Zhang, Y., Ni, H. and Jiang, L. (2020). Generation of imidazolinone herbicide resistant trait in Arabidopsis. Plos One, 15: e0233503. [DOI:10.1371/journal.pone.0233503] [PMID] [PMCID]
15. Doyle, J.J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.
16. FAOSTAT. (2018). FAOSTAT statistical database. http://faostat.fao.org. Accessed 10 January 2022.
17. Gaines, T.A., Zhang, W., Wang, D., Bukun, B., Chisholm, S.T., Shaner, D.L., Nissen, S.J., Patzoldt, W.L., Tranel, P.J. and Culpepper, A.S. (2010). Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proceedings of the National Academy of Sciences, 107: 1029-1034. [DOI:10.1073/pnas.0906649107] [PMID] [PMCID]
18. Gaur, P., Jukanti, A., Samineni, S., Chaturvedi, S., Singh, S., Tripathi, S., Singh, I., Singh, G., Das, T. and Aski, M. (2013). Large genetic variability in chickpea for tolerance to herbicides imazethapyr and metribuzin. Agronomy, 3: 524-536. [DOI:10.3390/agronomy3030524]
19. Gupta, M., Bindra, S., Sood, A., Singh, I., Singh, G., Gaur, P., Chaturvedi, S., Dixit, G. and Singh, S. (2018). Identifying new sources of tolerance to post emergence herbicides in chickpea (Cicer arietinum L.). Journal of Food Legumes, 31: 5-9.
20. Han, H., Yu, Q., Purba, E., Li, M., Walsh, M., Friesen, S. and Powles, S.B. (2012). A novel amino acid substitution Ala‐122‐Tyr in ALS confers high‐level and broad resistance across ALS‐inhibiting herbicides. Pest Management Science, 68: 1164-1170. [DOI:10.1002/ps.3278] [PMID]
21. Iquebal, M.A., Soren, K.R., Gangwar, P., Shanmugavadivel, P., Aravind, K., Singla, D., Jaiswal, S., Jasrotia, R.S., Chaturvedi, S.K. and Singh, N.P. (2017). Discovery of putative herbicide resistance genes and its regulatory network in chickpea using transcriptome sequencing. Frontiers in Plant Science, 8: 958. [DOI:10.3389/fpls.2017.00958] [PMID] [PMCID]
22. Jefferies, L. (2014). Responses of selected chickpea cultivars to imidazoline herbicide. M.Sc. Thesis, University of Saskatchewan, Saskatchewan, Canada.
23. Linda, P., Kim, Y.S. and Tong, L. (2010). Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proceedings of the National Academy of Sciences, 107: 22072-22077. [DOI:10.1073/pnas.1012039107] [PMID] [PMCID]
24. Lyon, D.J. and Wilson, R.G. (2005). Chemical weed control in dryland and irrigated chickpea. Weed Technology, 19: 959-965. [DOI:10.1614/WT-05-013R.1]
25. Mithila, J., McLean, M.D., Chen, S. and Christopher Hall, J. (2012). Development of near‐isogenic lines and identification of markers linked to auxinic herbicide resistance in wild mustard (Sinapis arvensis L.). Pest Management Science, 68: 548-556. [DOI:10.1002/ps.2289] [PMID]
26. Patzoldt, W.L., Hager, A.G., McCormick, J.S. and Tranel, P.J. (2006). A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proceedings of the National Academy of Sciences, 103: 12329-12334. [DOI:10.1073/pnas.0603137103] [PMID] [PMCID]
27. Petit, C., Bay, G., Pernin, F. and Delye, C. (2010). Prevalence of cross‐or multiple resistance to the acetyl‐coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black‐grass (Alopecurus myosuroides Huds.) in France. Pest Management Science, 66: 168-177. [DOI:10.1002/ps.1851] [PMID]
28. Powles, S.B. (2018). Herbicide Resistance in Plants: Biology and Biochemistry. CRC Press, FL, USA. [DOI:10.1201/9781351073189]
29. Prakash, N.R., Singh, R.K., Chauhan, S., Sharma, M.K., Bharadwaj, C., Hegde, V., Jain, P., Gaur, P. and Tripathi, S. (2017). Tolerance to post-emergence herbicide Imazethapyr in chickpea. Indian Journal of Genetics and Plant Breeding, 77: 400-407. [DOI:10.5958/0975-6906.2017.00054.2]
30. Rekha, K.B., Jayalakshmi, V., T., Srinivas, M.S.R. and Umamaheswari, P. (2017). Genetic variability for selective tolerance to imazethpyr in chickpea (Cicer arietinum L.). Journal of Food Legumes, 30: 30-35.
31. Rizwan, M. and Akhtar, S. (2015). Development of herbicide resistant crops through induced mutations. Advancements in Life Sciences, 3: 01-08.
32. Salas, R.A., Dayan, F.E., Pan, Z., Watson, S.B., Dickson, J.W., Scott, R.C. and Burgos, N.R. (2012). EPSPS gene amplification in glyphosate‐resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Management Science, 68: 1223-1230. [DOI:10.1002/ps.3342] [PMID]
33. Sathasivan, K., Haughn, G.W. and Murai, N. (1991). Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var Columbia. Plant Physiology, 97: 1044-1050. [DOI:10.1104/pp.97.3.1044] [PMID] [PMCID]
34. Shabani, A., Zebarjadi, A., Mostafaei, A., Mohsen, S. and Poordad, S.S. (2016). Identification of drought stress responsive proteins in susceptible genotype of chickpea (Cicer arietinum L.). Plant Genetic Researches, 3(1): 1-12 (In Persian). [DOI:10.29252/pgr.3.1.1]
35. Shaner, D.L., Lindenmeyer, R.B. and Ostlie, M.H. (2012). What have the mechanisms of resistance to glyphosate taught us?. Pest Management Science, 68: 3-9. [DOI:10.1002/ps.2261] [PMID]
36. Sharma, S. (2017). Genetic Variation for Tolerance to Herbicide Imazethapyr in Lentil (Lens culinaris Medik). Archives of Agronomy and Soil Science, 64(13): 1818-1830. [DOI:10.1080/03650340.2018.1463519]
37. Singh, S., Singh, I., Kapoor, K., Gaur, P., Chaturvedi, S., Singh, N. and Sandhu, J. (2014) Chickpea in Broadening the Genetic Base of Grain Legumes. Springer, Berlin Heidelberg, DE. [DOI:10.1007/978-81-322-2023-7_3]
38. Tahmasbali, M., Darvishzadeh, R. and Fayaz Moghaddam, A. (2020). Estimating breeding value of agronomic traits in oriental tobacco genotypes under broomrape stress and normal conditions. Plant Genetic Researches, 7(1): 103-126 (In Persian). [DOI:10.52547/pgr.7.1.7]
39. Tan, S., Evans, R.R., Dahmer, M.L., Singh, B.K. and Shaner, D.L. (2005). Imidazolinone‐tolerant crops: history, current status and future. Pest Management Science, 61: 246-257. [DOI:10.1002/ps.993] [PMID]
40. Taran, B., Warkentin, T., Vandenberg, A. and Holm, F. (2010). Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides. Canadian Journal Of Plant Science, 90: 139-142. [DOI:10.4141/CJPS09061]
41. Toker, C., Uzun, B., Ceylan, F. and Ikten, C. (2014) Chickpea in Alien Gene Transfer in Crop Plants, Volume II. Springer, Berlin Heidelberg, DE. [DOI:10.1007/978-1-4614-9572-7_6]
42. Vencill, W.K., Nichols, R.L., Webster, T.M., Soteres, J.K., Mallory-Smith, C., Burgos, N.R., Johnson, W.G. and McClelland, M.R. (2012). Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Science, 60: 2-30. [DOI:10.1614/WS-D-11-00206.1]
43. Wang, J.G., Lee, P.K.M., Dong, Y.H., Pang, S.S., Duggleby, R.G., Li, Z.M. and Guddat, L.W. (2009). Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase. The FEBS Journal, 276: 1282-1290. [DOI:10.1111/j.1742-4658.2009.06863.x] [PMID]
44. Wexler, P., Anderson, B.D., Gad, S.C., Hakkinen, P.B., Kamrin, M., De Peyster, A., Locey, B., Pope, C., Mehendale, H.M. and Shugart, L.R. (2014) Encyclopedia of Toxicology. Academic Press, US National Library of Medicine, Bethesda, MD, USA.
45. Yadav, S.S. and Chen, W. (2007) Chickpea Breeding and Management. CABI, Wallingford, UK. [DOI:10.1079/9781845932138.000]
46. Yasin, J., Al‐Thahabi, S., Abu‐Irmaileh, B., Saxena, M. and Haddad, N. (1995). Chemical weed‐control in chickpea and lentil. International Journal of Pest Management, 41: 60-65. [DOI:10.1080/09670879509371923]
47. Yu, Q., Collavo, A., Zheng, M.-Q., Owen, M., Sattin, M. and Powles, S.B. (2007). Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiology, 145: 547-558. [DOI:10.1104/pp.107.105262] [PMID] [PMCID]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sohrabi S M, Mousavi S K. Investigating The Genetic Resistance of Some Iranian Chickpea (Cicer arietinum L.) Cultivars to Pursuit Herbicide. pgr 2023; 9 (2) :95-108
URL: http://pgr.lu.ac.ir/article-1-278-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (2023) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657