[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 8, Issue 2 (2022) ::
pgr 2022, 8(2): 1-22 Back to browse issues page
Efficient Agrobacterium-Mediated Transformation and Analysis of Transgenic Plants in Hybrid Black Poplar (Populus × euromericana Dode Guinier)
Shahnoush Nayeri , Bahram Baghban Kohnehrouz *
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran , bahrambaghban.kr@tabrizu.ac.ir
Abstract:   (7251 Views)
Black poplar (Populus× euramericana Dode Guinier) is an industrially important tree with broad applications in wood and paper, biofuel and cellulose-based industries as well as plant breeding programs and soil phytoremediation approaches. Here, we have focused on development of direct shoot regeneration and Agrobacterium-mediated transformation protocols using the in vitro internodal stem tissue from hybrid black poplar. To obtain efficient plant regeneration, the internodal stem explant was cultured on SIM and RIM medium containing different concentrations of BAP × IBA and IBA × NAA, respectively. The crucial factors involved in genetic transformation have been evaluated to achieve Agrobacterium-mediated transformation protocol. We achieved fast and highly potential shoot regeneration from the explants cultured on SIM containing BAP 0.5mg/L and IBA 0.05mg/L with 28.57 shoots per explant. The normal roots developed from the plantlets cultured on RIM containing IBA 0.1mg/L and NAA 0.05mg/L and 100% of the regenerated plants were hardened and transferred to the greenhouse condition. Our results indicated that 0.5 µM Basta® could provide a stringent selection for the inhibition of non-transformed cells. We also obtained the highest transformation efficiency of 93.33% through preculturing the explants for 6 days and dipping into IM medium containing A. tumefaciens strain LBA4404 (OD600 = 0.6) and 100 µM AS for 10 min. The Southern blotting analysis, RT-PCR and GUS histochemical analysis were confirmed the stable single or two-copies gus transgenesis in the genomic DNA and its expression in the selected T0 generation plants. The findings indicate that these protocols could be used for genetic engineering approaches in hybrid black poplar.
Keywords: Direct regeneration, GUS gene expression, Southern blotting, Internodal stem, Populus × euramericana
Full-Text [PDF 2325 kb]   (3057 Downloads)    
Type of Study: Research | Subject: Genetic engineering
References
1. Abbas, M., Peszlen, I., Shi, R., Kim, H., Katahira, R., Kafle, K., Xiang, Z., Huang, X., Min, D. and Mohamadamin, M. (2020). Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physiology, 40: 73-89. [DOI:10.1093/treephys/tpz020]
2. Agrawal, V. and Gupta, S.C. (1991). In vitro plantlet development from explants of 25-year-old trees of Populus× euramericana-a hybrid poplar. Plant Science, 78: 99-105. [DOI:10.1016/0168-9452(91)90166-6]
3. Alba, N. (1992). Mejora genética de Populus alba L. El cultivo de álamos y Sauces Actas de la 19 sesión de la Comisión Internacional del Alamo (IPC) Zaragoza, 25: 157-168.
4. Arend, M. and Fromm, J. (2007). Seasonal change in the drought response of wood cell development in poplar. Tree Physiology, 27: 985-992. [DOI:10.1093/treephys/27.7.985]
5. Bae, E.K., Lee, H., Lee, J.S. and Noh, E.W. (2011). Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba× P. tremula var. glandulosa). Gene, 483: 43-48. [DOI:10.1016/j.gene.2011.05.015]
6. Balestrazzi, A., Bonadei, M., Quattrini, E. and Carbonera, D. (2009). Occurrence of multiple metal-resistance in bacterial isolates associated with transgenic white poplars (Populus alba L.). Annals of Microbiology, 59: 17-23. [DOI:10.1007/BF03175593]
7. Bali, G., Khunsupat, R., Akinosho, H., Payyavula, R.S., Samuel, R., Tuskan, G.A., Kalluri, U.C. and Ragauskas, A.J. (2016). Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes. Biomass and Bioenergy, 94: 146-154. [DOI:10.1016/j.biombioe.2016.08.013]
8. Biswal, A.K., Hao, Z., Pattathil, S., Yang, X., Winkeler, K., Collins, C., Mohanty, S.S., Richardson, E.A., Gelineo-Albersheim, I. and Hunt, K. (2015). Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnology for Biofuels, 8: 1-26. [DOI:10.1186/s13068-015-0218-y]
9. Biswas, K.K., Mohri, T., Kogawara, S., Hase, Y. and Oono, Y. (2012). An improved system for shoot regeneration from stem explants of Lombardy poplar (Populus nigra L. var. Italica Koehne). American Journal of Plant Sciences, 3: 1181. [DOI:10.4236/ajps.2012.39143]
10. Bjurhager, I., Olsson, A.M., Zhang, B., Gerber, L., Kumar, M., Berglund, L.A., Burgert, I., Sundberg, B.R. and Salmén, L. (2010). Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules, 11: 2359-2365. [DOI:10.1021/bm100487e]
11. Bonadei, M., Zelasco, S., Giorcelli, A., Gennaro, M., Calligari, P., Quattrini, E., Carbonera, D. and Balestrazzi, A. (2012). Transgene stability and agronomical performance of two transgenic Basta®-tolerant lines of Populus alba L. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 146: 33-40. [DOI:10.1080/11263504.2011.641037]
12. Bruegmann, T., Polak, O., Deecke, K., Nietsch, J. and Fladung, M. (2019) Poplar Transformation. In: Kumar, S., Barone, P. and Smith, M., Eds., Transgenic Plants: Methods and Protocols, pp. 165-177, Springer New York, USA. [DOI:10.1007/978-1-4939-8778-8_12]
13. Bryan, A.C., Jawdy, S., Gunter, L., Gjersing, E., Sykes, R., Hinchee, M.A., Winkeler, K.A., Collins, C.M., Engle, N. and Tschaplinski, T.J. (2016). Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal, 14: 2010-2020. [DOI:10.1111/pbi.12560]
14. Buhl, C., Meilan, R. and Lindroth, R.L. (2017). Genetic modification of lignin in hybrid poplar (Populus alba × Populus tremula) does not substantially alter plant defense or arthropod communities. Journal of Insect Science, 17(3): 76. [DOI:10.1093/jisesa/iex052]
15. Cai, Y., Zhang, K., Kim, H., Hou, G., Zhang, X., Yang, H., Feng, H., Miller, L., Ralph, J. and Liu, C.J. (2016). Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nature Communications, 7: 11989. [DOI:10.1038/ncomms11989]
16. Caruso, A., Chefdor, F., Carpin, S., Depierreux, C., Delmotte, F.M., Kahlem, G. and Morabito, D. (2008). Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. Journal of Plant Physiology, 165: 932-941. [DOI:10.1016/j.jplph.2007.04.006]
17. Cavusoglu, A., Ipekci-Altas, Z., Bajrovic, K., Gozukirmizi, N. and Zehir, A. (2011). Direct and indirect plant regeneration from various explants of eastern cottonwood clones (Populus deltoides Bartram ex Marsh.) with tissue culture. African Journal of Biotechnology, 10: 3216-3221. [DOI:10.5897/AJB10.2400]
18. Che, D., Meagher, R.B., Heaton, A.C., Lima, A., Rugh, C.L. and Merkle, S.A. (2003). Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnology Journal, 1: 311-319. [DOI:10.1046/j.1467-7652.2003.00031.x]
19. Chen, F., Liu, C.J., Tschaplinski, T.J. and Zhao, N. (2009). Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Critical Reviews in Plant Science, 28: 375-392. [DOI:10.1080/07352680903241279]
20. Confalonieri, M., Allegro, G., Balestrazzi, A., Fogher, C. and Delledonne, M. (1998). Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi 3) gene. Molecular Breeding, 4: 137-145. [DOI:10.1023/A:1009640204314]
21. Confalonieri, M., Balestrazzi, A. and Bisoffi, S. (1994). Genetic transformation of Populus nigra by Agrobacterium tumefaciens. Plant Cell Reports, 13: 256-261. [DOI:10.1007/BF00233315]
22. Confalonieri, M., Balestrazzi, A., Bisoffi, S. and Carbonera, D. (2003). In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell, Tissue and Organ Culture, 72: 109-138. [DOI:10.1023/A:1022265504775]
23. Confalonieri, M., Balestrazzi, A. and Cella, R. (1997). Genetic transformation of Populus deltoides and Px euramericana clones using Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 48: 53-61. [DOI:10.1023/A:1005838032153]
24. Confalonieri, M., Belenghi, B., Balestrazzi, A., Negri, S., Facciotto, G., Schenone, G. and Delledonne, M. (2000). Transformation of elite white poplar (Populus alba L.) cv.'Villafranca'and evaluation of herbicide resistance. Plant Cell Reports, 19: 978-982. [DOI:10.1007/s002990000230]
25. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W. and Marraffini, L.A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339: 819-823. [DOI:10.1126/science.1231143]
26. Dai, W., Cheng, Z.M. and Sargent, W. (2003). Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues. In Vitro Cellular & Developmental Biology-Plant, 39: 6-11. [DOI:10.1079/IVP2002355]
27. Dashchi, S., Rahnama, H., Cheghamirza, K. and Zamani, K. (2021). Construction of plant expression vectors harboring WRI1 and LPAAT genes and its transformation in tobacco plants. Plant Genetic Researches, 7(2): 41-54(In Persian). [DOI:10.52547/pgr.7.2.4]
28. Delledonne, M., Allegro, G., Belenghi, B., Balestrazzi, A., Picco, F., Levine, A., Zelasco, S., Calligari, P. and Confalonieri, M. (2001). Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Molecular Breeding, 7: 35-42. [DOI:10.1023/A:1009605001253]
29. Dharmawardhana, P., Brunner, A.M. and Strauss, S.H. (2010). Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics, 11: 150. [DOI:10.1186/1471-2164-11-150]
30. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.
31. Du, N., Liu, X., Li, Y., Chen, S., Zhang, J., Ha, D., Deng, W., Sun, C., Zhang, Y. and Pijut, P.M. (2012). Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell, Tissue and Organ Culture, 108: 181-189. [DOI:10.1007/s11240-011-0026-4]
32. Fan, D., Li, C., Fan, C., Hu, J., Li, J., Yao, S., Lu, W., Yan, Y. and Luo, K. (2020). MicroRNA6443‐mediated regulation of FERULATE 5‐HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa. New Phytologist, 226: 410-425. [DOI:10.1111/nph.16379]
33. Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y. and Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports, 5: 1-7. [DOI:10.1038/srep12217]
34. Foston, M., Hubbell, C.A., Samuel, R., Jung, S., Fan, H., Ding, S.Y., Zeng, Y., Jawdy, S., Davis, M. and Sykes, R. (2011). Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy & Environmental Science, 4: 4962-4971. [DOI:10.1039/c1ee02073k]
35. Gallagher, S.R. (1992) Quantitation of GUS Activity by Fluorometry. Academic Press INC, Sandiego, California, USA. [DOI:10.1016/B978-0-12-274010-7.50009-4]
36. Green, M.R. and Sambrook, J. (2020). Transformation of Escherichia coli by Electroporation. Cold Spring Harbor Protocols, 2020: 232-238. [DOI:10.1101/pdb.prot101220]
37. Han, K.H., Meilan, R., Ma, C. and Strauss, S. (2000). An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Reports, 19: 315-320. [DOI:10.1007/s002990050019]
38. Han, X., Ma, S., Kong, X., Takano, T. and Liu, S. (2013). Efficient Agrobacterium-mediated transformation of hybrid poplar Populus davidiana Dode × Populus bollena Lauche. International Journal of Molecular Sciences, 14: 2515-2528. [DOI:10.3390/ijms14022515]
39. Hoekema, A., Hirsch, P.R., Hooykaas, P.J. and Schilperoort, R.A. (1983). A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 303: 179-180. [DOI:10.1038/303179a0]
40. Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. (1993). NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2: 208-218. [DOI:10.1007/BF01977351]
41. Hori, C., Takata, N., Lam, P.Y., Tobimatsu, Y., Nagano, S., Mortimer, J.C. and Cullen, D. (2020). Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus. Scientific Reports, 10: 1-13. [DOI:10.1038/s41598-020-78781-6]
42. Igasaki, T., Ishida, Y., Mohri, T., Ichikawa, H. and Shinohara, K. (2002). Transformation of Populus alba and direct selection of transformants with the herbicide bialaphos. Bulletin of the Forestry and Forest Products Research Institute, 1: 235-240.
43. Jiang, C., Liu, Z. and Zheng, Q. (2015). Direct regeneration of plants derived from in vitro cultured shoot tips and leaves of poplar (Populus × euramericana 'Neva'). Journal of Life Sciences, 9: 366-372. [DOI:10.17265/1934-7391/2015.08.004]
44. Khosravan, S., Mirzaie-Nodoushan, H., Ghamari Zare, A. and Ebrahimi, M.A. (2017). Different responses of poplar inter-specific hybrids to micropropagation. Scientific Journal Management System, 25: 43-56.
45. Kim, H., Li, Q., Karlen, S.D., Smith, R.A., Shi, R., Liu, J., Yang, C., Tunlaya-Anukit, S., Wang, J.P. and Chang, H.M. (2020). Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. ACS Sustainable Chemistry & Engineering, 8: 3644-3654. [DOI:10.1021/acssuschemeng.9b06389]
46. Lubrano, L. (1992) Micropropagation of poplars (Populus spp.) in High-Tech and Micropropagation II pp. 151-178, Springer, Berlin, Heidelberg, DE. [DOI:10.1007/978-3-642-76422-6_8]
47. Mohri, T., Yamamoto, N. and Shinohara, K. (1996). Agrobacterium-mediated transformation of lombardy poplar (Populus nigra L. var. Italica Koehne) using stem segments. Journal of Forest Research, 1: 13-16. [DOI:10.1007/BF02348333]
48. Movahedi, A., Wei, H., Chen, Z.H., Sun, W., Zhang, J., Li, D., Yang, L. and Zhuge, Q. (2021). Highly efficient CRISPR-mediated homologous recombination via NHEJ deficiency rather than HDR factors overexpression in Populus. BioRxiv, https://doi.org/10.1101/2020.07.04.188219 [DOI:10.1101/2020.07.04.188219.]
49. Muhr, M., Paulat, M., Awwanah, M., Brinkkötter, M. and Teichmann, T. (2018). CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control. Tree Physiology, 38: 1588-1597. [DOI:10.1093/treephys/tpy088]
50. Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
51. Nayeri, S., Baghban Kohnehrouz, B., Ahmadikhah, A. and Mahna, N. (2022). CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. Plant Biotechnology Journal, 2022: 1-16 [DOI:10.1111/pbi.13803]
52. Nishiguchi, M., Yoshida, K., Mohri, T., Igasaki, T. and Shinohara, K. (2006). An improved transformation system for Lombardy poplar (Populus nigra var. Italica). Journal of Forest Research, 11: 175-180. [DOI:10.1007/s10310-006-0203-1]
53. Ooms, G., Hooykaas, P.J., Van Veen, R.J., Van Beelen, P., Regensburg-Tuïnk, T.J. and Schilperoort, R.A. (1982). Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid, 7: 15-29. [DOI:10.1016/0147-619X(82)90023-3]
54. Pintarić, B. (2008). Micropropagation of white poplar (Populus alba L.). Šumarski List, 132: 343-354.
55. Raj, S., Bräutigam, K., Hamanishi, E.T., Wilkins, O., Thomas, B.R., Schroeder, W., Mansfield, S.D., Plant, A.L. and Campbell, M.M. (2011). Clone history shapes Populus drought responses. Proceedings of the National Academy of Sciences, 108: 12521-12526. [DOI:10.1073/pnas.1103341108]
56. Rani, V., Parida, A. and Raina, S. (1995). Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Reports, 14: 459-462. [DOI:10.1007/BF00234055]
57. Rishi, A., Nelson, N.D. and Goyal, A. (2001). Genetic modification for improvement of Populus. Physiology and Molecular Biology of Plants, 7: 7-21.
58. Rutledge, C.B. and Douglas, G. (1988). Culture of meristem tips and micropropagation of 12 commercial clones of poplar in vitro. Physiologia Plantarum, 72: 367-373. [DOI:10.1111/j.1399-3054.1988.tb05846.x]
59. Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J.R., Bhalerao, R.P., Boerjan, W. and Rohde, A. (2007). A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell, 19: 2370-2390. [DOI:10.1105/tpc.107.052811]
60. Saieed, N.T., Douglas, G. and Fry, D. (1994). Induction and stability of somaclonal variation in growth, leaf phenotype and gas exchange characteristics of poplar regenerated from callus culture. Tree Physiology, 14: 1-16. [DOI:10.1093/treephys/14.1.1]
61. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY, USA.
62. Sambrook, J. and Russell, D.W. (2006). Transformation of E. coli by electroporation. Cold Spring Harbor Protocols, 2006 (1). doi: 10.1101/pdb.prot3933. [DOI:10.1101/pdb.prot3933]
63. Shestibratov, K., Bulatova, I. and Novikov, P. (2010). In vitro response of transgenic aspen containing glutamine synthetase gene GSI to the sublethal dose of phosphinothricin. Applied Biochemistry and Microbiology, 46: 763-768. [DOI:10.1134/S0003683810080053]
64. Song, C., Lu, L., Guo, Y., Xu, H. and Li, R. (2019). Efficient Agrobacterium-Mediated Transformation of the Commercial Hybrid Poplar Populus Alba × Populus glandulosa Uyeki. International Journal of Molecular Sciences, 20: 2594. [DOI:10.3390/ijms20102594]
65. Stanciulescu, I., Badea, A., Marculescu, C., Khachatryan, L. and Boldor, D. (2018). Reaction constants and activation energies in pyrolysis for Populus Alba. University Politehnica of Bucharest Scientific Bulletin, Series B: Chemistry and Materials Science, 80: 65-74.
66. Street, N.R., Skogström, O., Sjödin, A., Tucker, J., Rodríguez‐Acosta, M., Nilsson, P., Jansson, S. and Taylor, G. (2006). The genetics and genomics of the drought response in Populus. The Plant Journal, 48: 321-341. [DOI:10.1111/j.1365-313X.2006.02864.x]
67. Tao, Y.Z., Li, F. and Li, Y. (2008). Establishment of tissue culture regeneration system of Populus nigra var. thevestina. Journal of Northwest A&F University, 37: 203-207.
68. Triozzi, P.M., Schmidt, H.W., Dervinis, C., Kirst, M. and Conde, D. (2021). Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba. Tree Physiology, 41: 2216-2227. [DOI:10.1093/treephys/tpab066]
69. Xin, H., Zhang, T., Wu, Y., Zhang, W., Zhang, P., Xi, M. and Jiang, J. (2020). An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. The Plant Journal, 101: 253-264. [DOI:10.1111/tpj.14536]
70. Xu, W., Cheng, H., Zhu, S., Cheng, J., Ji, H., Zhang, B., Cao, S., Wang, C., Tong, G. and Zhen, C. (2021). Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA‐induced gene knockouts. The New Phytologist, 231: 1478. [DOI:10.1111/nph.17338]
71. Yevtushenko, D.P. and Misra, S. (2010). Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L.× P. maximowiczii A. Henry. Plant Cell Reports, 29: 211-221. [DOI:10.1007/s00299-009-0806-z]
72. Yoo, C.G., Yang, Y., Pu, Y., Meng, X., Muchero, W., Yee, K.L., Thompson, O.A., Rodriguez, M., Bali, G. and Engle, N.L. (2017). Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion. Green Chemistry, 19: 5467-5478. [DOI:10.1039/C7GC02219K]
73. Zelasco, S., Ressegotti, V., Confalonieri, M., Carbonera, D., Calligari, P., Bonadei, M., Bisoffi, S., Yamada, K. and Balestrazzi, A. (2007). Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by 'single-step transformation'. Plant Cell, Tissue and Organ Culture, 91: 61-72. [DOI:10.1007/s11240-007-9278-4]
74. Zhang, W., Wang, Y., Diao, S., Zhong, S., Wu, S., Wang, L., Su, X. and Zhang, B. (2021). Assessment of epigenetic and phenotypic variation in populus nigra regenerated via sequential regeneration. Frontiers in Plant Science, 2: 632088. [DOI:10.3389/fpls.2021.632088]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nayeri S, Baghban Kohnehrouz B. Efficient Agrobacterium-Mediated Transformation and Analysis of Transgenic Plants in Hybrid Black Poplar (Populus × euromericana Dode Guinier). pgr 2022; 8 (2) :1-22
URL: http://pgr.lu.ac.ir/article-1-238-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (2022) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657