[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 6, Issue 2 (2020) ::
pgr 2020, 6(2): 157-172 Back to browse issues page
Effect of Exogenous Brassinosteroid Application on Grain Yield, some Physiological Traits and Expression of Genes Related to This Hormone Signaling Pathway in Wheat under Drought Stress
Mehrnoosh Rafeie , Mohammad Reza Amerian * , Behzad Sorkhi , Parviz Heidari , Hamid Reza Asghari
Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran , amerianuk@yahoo.co.uk
Abstract:   (13113 Views)
To investigate the effect of exogenous brassinosteroid application on grain yield, catalase, chlorophyll content, membrane mtability index and gene expression of some genes involving in brassinosteroid signaling pathway (BES1 and BRI1) under drought stress, a split-split plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Improvement Institute, Karaj, Iran in 2019. The main factor was two irrigation treatments (normal irrigation and water holding after 50% flowering stage), the subplots were four concentrations of brassinosteroid (0, 0.25, 0.625 and 1 mg/l) and seven genotypes (Mehregan, Paris, 2858, 3505, 3737, 4228 and 4056) were considered as sub-sub plots. Samples were taken at 30 days after 50% flowering stage (zadoks 89) from flag leaves. The results showed that drought stress significantly reduced grain yield, chlorophyll content, membrane stability index and increased catalase in all genotypes. Genotype 4228 was identified as the most tolerant genotype among unknown wheat genotypes based on grian yield, chlorophyll content, membrane stability index and catalase. Also, the result revealed that applied epibrassinolide could reduce the destructive effects of drought stress on wheat thus grain yield was enhanced under drought stress in all genotypes by increasing the aforementioned traits. Forethermore, grain yield was increased by rising the epibrasinolide concentration. Gene expression pattern of TaBES1 and TaBRI1 using real-time PCR showed that although brassinosteroid enhances drought tolerance in wheat but its signaling pathway is different from the BRI1 signaling pathway.
Keywords: Brassinosteroid, Gene expression, Drought stress, Wheat, Real-time PCR
Full-Text [PDF 1127 kb]   (2014 Downloads)    
Type of Study: Research | Subject: Plant improvement
References
1. Abid, M., Tian, Z., Ata-Ul-Karim, S.T., Liu, Y., Cui, Y., Zahoor, R., Dong, J. and Dai, T. (2016). Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and-sensitive wheat cultivars. Plant Physiology and Biochemistry, 106: 218-227. [DOI:10.1016/j.plaphy.2016.05.003]
2. Ahmed, I.M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D. and Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63: 49-60. [DOI:10.1016/j.plaphy.2012.11.004]
3. Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X. and Li, Y. (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biological Research, 51(1): 46. [DOI:10.1186/s40659-018-0195-2]
4. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1): 1-15. [DOI:10.1104/pp.24.1.1]
5. Ashraf, M. (2010). Inducing drought tolerance in plants: recent advances. Biotechnology Advances, 28(1): 169-183. [DOI:10.1016/j.biotechadv.2009.11.005]
6. Behnamnia, M., Kalantari, K.M. and Ziaie, J. (2009). The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turkish Journal of Botany, 33(6): 417-428.
7. Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11): 1159-1168. [DOI:10.1071/AR05069]
8. Chance, B. and Maehly, A.C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
9. Chaves, M.M. and Oliveira, M.M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407): 2365-2384. [DOI:10.1093/jxb/erh269]
10. Chen, J., Nolan, T.M., Ye, H., Zhang, M., Tong, H., Xin, P., Jinfang, C., Chengcai, C., Zhaohu, L. and Yin, Y. (2017). Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. The Plant Cell, 29(6): 1425-1439. [DOI:10.1105/tpc.17.00364]
11. Clouse, S.D. (1996). Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. The Plant Journal, 10(1): 1-8. [DOI:10.1046/j.1365-313X.1996.10010001.x]
12. Collado, M.B., Arturi, M.J., Aulicino, M.B. and Molina, M.C. (2010). Identification of salt tolerance in seedling of maize (Zea mays L.) with the cell membrane stability trait. International Research Journal of Plant Science, 1(5): 126-132.
13. Dehghan, M., Balouchi, H.R., Yadavi, A.R. and Safikhani, F. (2017). Effect of foliar application of brassinolide on grain yield and yield components of bread wheat (Triticum aestivum L.) cv. Sirvan under terminal drought stress conditions. Iranian Journal of Crop Sciences, 19(1): 40-56.
14. Dhanda, S.S., Sethi, G.S. and Behl, R.K. (2004). Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, 190(1): 6-12. [DOI:10.1111/j.1439-037X.2004.00592.x]
15. Dhaubhadel, S., Chaudhary, S., Dobinson, K.F. and Krishna, P. (1999). Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant molecular Biology, 40(2): 333-342. [DOI:10.1023/A:1006283015582]
16. Dhayal, S.S., Bagdi, D.L., Kakralya, B.L., Saharawat, Y.S. and Jat, M.L. (2012). Brassinolide induced modulation of physiology, growth and yield of wheat (Triticum aestivum L.) under water stress condition. Crop Research (Hisar), 44(1/2): 14-19.
17. Dhindsa, R.S., Plumb-Dhindsa, P. and Thorpe, T.A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1): 93-101. [DOI:10.1093/jxb/32.1.93]
18. Ehdaie, B. (1995). Variation in water-use efficiency and its components in wheat: II. Pot and field experiments. Crop Science, 35(6): 1617-1626. [DOI:10.2135/cropsci1995.0011183X003500060017x]
19. Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S. and Ahmad, A. (2009). Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiologiae Plantarum, 31(5): 889-897. [DOI:10.1007/s11738-009-0302-7]
20. Fariduddin, Q., Yusuf, M., Ahmad, I. and Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58(1): 9-17. [DOI:10.1007/s10535-013-0374-5]
21. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant Drought Stress: Effects, Mechanisms and Management. Springer, Dordrecht. Berlin, DE. [DOI:10.1007/978-90-481-2666-8_12]
22. Feng, Y., Yin, Y. and Fei, S. (2015). Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Science, 234: 163-173. [DOI:10.1016/j.plantsci.2015.02.015]
23. Gill, B.S., Appels, R., Botha-Oberholster, A.M., Buell, C.R., Bennetzen, J.L., Chalhoub, B., Chumley, F., Dvořák, J., Iwanaga, M., Keller, B. and Li, W. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics, 168(2): 1087-1096. [DOI:10.1534/genetics.104.034769]
24. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen Jr, J.D., Steffens, G.L., Flippen-Anderson, J.L. and Cook Jr, J.C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281(5728): 216-217. [DOI:10.1038/281216a0]
25. Hayat, S. and Ahmad, A. (2010). Brassinosteroids: A Class of Plant Hormone. Springer Netherlands, North Holland, NL. [DOI:10.1007/978-94-007-0189-2]
26. Ji, X., Shiran, B., Wan, J., Lewis, D.C., Jenkins, C.L., Condon, A.G., Richards, R.A. and Dolferus, R. (2010). Importance of preanthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant, Cell & Environment, 33(6): 926-942. [DOI:10.1111/j.1365-3040.2010.02130.x]
27. Kamran, M., Shahbaz, M., Ashraf, M. and Akram, N.A. (2009). Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pakistan Journal of Botany, 41(2): 621-632.
28. Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Science, 8(3): 1051-1060.
29. Khripach, V.A., Zhabinskii, V.N. and de Groot, A.E. (1998). Brassinosteroids: A New Class of Plant Hormones. Academic Press, Wageningen, NL.
30. Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22(4): 289-297. [DOI:10.1007/s00344-003-0058-z]
31. Li, K.R. and Feng, C.H. (2011). Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 33(4): 1293-1300. [DOI:10.1007/s11738-010-0661-0]
32. Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J. and Yin, Y. (2009). Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid induced gene expression. The Plant Journal, 58(2): 275-286. [DOI:10.1111/j.1365-313X.2008.03778.x]
33. Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z. and Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56(1): 192-196. [DOI:10.1007/s10535-012-0041-2]
34. Lutts, S., Kinet, J.M. and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3): 389-398. [DOI:10.1006/anbo.1996.0134]
35. Mesgaran, M., Madani, K., Hashemi, H. and Azadi, P. (2016). Stanford Iran 2040 Project: Evaluation of Land and Precipitation for Agriculture in Iran. Stanford University Press, California, USA.
36. Mibei, E.K., Ambuko, J., Giovannoni, J.J., Onyango, A.N. and Owino, W.O. (2017). Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Science & Nutrition, 5(1):113-122. [DOI:10.1002/fsn3.370]
37. Molaei, B., Moghaddam, M., Alvaikia, S.S. and Bandeh-Hagh, A. (2017). Generation mean analysis for several agronomic and physiologic traits in bread wheat under normal and water deficit stress conditions. Plant Genetic Researches, 3(2): 1-10 (In Persian). [DOI:10.29252/pgr.3.2.1]
38. Nie, S., Huang, S., Wang, S., Mao, Y., Liu, J., Ma, R. and Wang, X. (2019). Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato. Plant Physiology and Biochemistry, 138: 36-47. [DOI:10.1016/j.plaphy.2019.02.014]
39. Nouri-Ganbalani, A., Nouri-Ganbalani, G. and Hassanpanah, D. (2009). Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food, Agriculture & Environment, 7(3/4): 228-234.
40. Paknejad, F., Jamiami, A.M., Vazan, S. and Ardakani, M.R. (2009). Effects of water stress at different growth stages on yield and water use efficiency of some wheat cultivars. Jounal of Crop Production, 2: 17-36.
41. Pask, A.J.D., Pietragalla, J., Mullan, D.M. and Reynolds, M.P. (2012). Physiological Breeding II: A Field Guide To Wheat Phenotyping. CIMMYT, Mexico City, MX.
42. Pfaffl, M. (2009). Rest 2009 Software User Guide. Qiagen, Hilden, DE.
43. Prins, C.L., Vieira, I.J. and Freitas, S.P. (2010). Growth regulators and essential oil production. Brazilian Journal of Plant Physiology, 22(2): 91-102. [DOI:10.1590/S1677-04202010000200003]
44. Rychlik, W. (2007). OLIGO 7 Primer Analysis Software. PCR Primer Design. Humana Press, New Jersey, USA. [DOI:10.1007/978-1-59745-528-2_2]
45. Sairam, R.K. (1994). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation, 14(2): 173-181. [DOI:10.1007/BF00025220]
46. Schütz, M. and Fangmeier, A. (2001). Growth and yield responses of spring wheat (Triticum aestivum L. cv. Minaret) to elevated CO2 and water limitation. Environmental Pollution, 114(2): 187-194. [DOI:10.1016/S0269-7491(00)00215-3]
47. Sedaghat, M. and Emam, Y. (2016). Effect of three growth regulators on grain yield of wheat cultivars under different moisture regimes. Journal of Crop Production and Processing, 6(21): 15-33. [DOI:10.18869/acadpub.jcpp.6.21.15]
48. Shahbaz, M. and Ashraf, M. (2007). Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan Journal of Botany, 39(2): 513-522.
49. Sharma, I., Ching, E., Saini, S., Bhardwaj, R. and Pati, P.K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69: 17-26. [DOI:10.1016/j.plaphy.2013.04.013]
50. Shen, X.Y., Dai, J.Y., Hu, A.C., Gu, W.L., He, R.Y. and Zheng, B. (1990). Studies on physiological effects of brassinolide on drought resistance in maize. Journal of Shenyang Agricultural University, 21(3): 191-195.
51. Shewry, P.R. (2009). Wheat. Journal of Experimental Botany, 60(6): 1537-1553. [DOI:10.1093/jxb/erp058]
52. Taiz, L. and Zeiger, E. (2004). Fisiologia Vegetal, 3ed. Editora UFV, Ponte Nova, BR.
53. Vardhini, B.V. and Anjum, N.A. (2015). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science, 2, 67. [DOI:10.3389/fenvs.2014.00067]
54. Yazdi Samadi, B., Rezaei, A. M., and Valizadeh, M. (2008). Statistical Designs in Agricultural Research. University of Tehran Press, Tehran, IR (In Persian).
55. Ye, H., Liu, S., Tang, B., Chen, J., Xie, Z., Nolan, T.M., Jiang, H., Guo, H., Lin, H.Y., Li, L. and Wang, Y. (2017). RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 8: 14573. [DOI:10.1038/ncomms14573]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rafeie M, Amerian M R, Sorkhi B, Heidari P, Asghari H R. Effect of Exogenous Brassinosteroid Application on Grain Yield, some Physiological Traits and Expression of Genes Related to This Hormone Signaling Pathway in Wheat under Drought Stress. pgr 2020; 6 (2) :157-172
URL: http://pgr.lu.ac.ir/article-1-134-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (2020) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657