[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 5, Issue 2 (2019) ::
pgr 2019, 5(2): 1-16 Back to browse issues page
Identification of Microsatellite Markers Linked with Genomic Regions Involved in Resistance to Basal Stem Rot Disease Isolates in Oily Sunflower (Helianthus annuus L.) under Controlled Conditions
Khadijeh Mousa Khalifani , Reza Darvishzadeh * , Masoud Abrinbana , Aram Nouri
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran , r.darvishzadeh@urmia.ac.ir
Abstract:   (15318 Views)
Sunflower (Helianthus annuus L.) is an important crop that its oil has nutritional and high economic value. Basal stem rot, caused by Sclerotinia sclerotiorum and S. minor, is one of the important and devastating disease of sunflower. The use of resistant cultivars is considered as the most important and effective method to control the disease. In this study, the reaction of 100 oily sunflower lines to three isolates of S. sclerotiorum and three isolates of S. minor was studied. Identification of gene loci associated with resistance to disease was done with markers produced with 30 SSR primers pairs. The results showed that some of sunflower genotypes had well resistant to Sclerotinia disease. Population structure analysis using Structure software identified 2 subpopulations (K=2). Association analysis using TASEEL software with general and mixed linear models (GLM and MLM) identified 14 and 12 loci, respectively that have significant association with resistant genes related to Sclerotinia. ORS617 locus was commonly related to genes associated with resistance to M1 from S. minor and J1 from S. sclerotiorum. The common markers are important in sunflower breeding programs making possible simultaneously selection for several traits and producing resistant cultivars to Sclerotinia disease.
Keywords: Sunflower, Sclerotinia rot, Linkage disequilibrium, Horizontal resistance, Gene mapping
Full-Text [PDF 1266 kb]   (1869 Downloads)    
Type of Study: Research | Subject: Plant genetics
References
1. Abdullah, S.K. and Al-Mousawi, K.A. (2010). Fungi associated with seeds of sunflower (Helianthus annuus L.) cultivars grown in Iraq. Phytopathologia, 57: 11-20.
2. Anonymous. (2010). Agribusiness handbook: sunflower crude and refined oil. FAO/EBRD pp. 5-14.
3. Abdurakhmonov, I.Y. and Abdukarimov, A. (2008). Application of association mapping to understanding the genetic diversity of plant germplasm resources. International Journal of Plant Genomics, 2008: 574927. [DOI:10.1155/2008/574927]
4. Alizadeh, M., Aalami, A., Shirzadian-Khorramabad, R., Ebadi, A.A. and Azizi, H. (2016). Genetic variation and association analysis of some important traits related to grain in rice (Oryza sativa L.) germplasm. Journal of Plant Molecular Breeding, 4(1): 26-34.
5. Amoozadeh, M., Darvishzadeh, R., Davar, R., Abdollahi-Mandoulakani, B., Haddadi, P. and Basirnia, A. (2015). Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. Journal of Agricultural Science and Technology, 17: 213-226.
6. Amoozadeh, A., Rahmani, S. and Nemati, F. (2013). Poly (ethylene) glycol/AlCl3 as a new and efficient system for multicomponent Biginelli-type synthesis of pyrimidinone derivatives. Heterocyclic Communications, 19(1): 69-73. [DOI:10.1515/hc-2012-0157]
7. Ataii, R., Mohammadi, V., Taleai, A.R. and Nagavi, M.R. (2013). Association mapping of root traits in barley. Iranian Journal of Field Crop Science, 44: 347-357
8. Azizi, H., Aalami, A., Esfahani, M. and Ebadi. A.A. (2017). Association and structure analysis of some of rice (Oryza sativa L.) genetic resources based on microsatellite markers, Cereal Research, 7(1): 1-16.
9. Basirnia, A., Hatami Maleki, H., Darvishzadeh, R. and Ghavami, F. (2014). Mixed linear model association mapping for low chloride accumulation rate in oriental-type tobacco (Nicotiana tabacum L.) germplasm. Journal of Plant Interactions, 9: 666-672. [DOI:10.1080/17429145.2014.893453]
10. Bert, P.F., Jouan, I., de Labrouhe, T.D., Serre, F., Nicolas, P. and Vear, F. (2002). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theoretical and Applied Genetics, 105: 985-993. [DOI:10.1007/s00122-002-1004-3]
11. Bhutta, A.R. (1998). Biological studies on some fungi associated with sunflower in Pakistan (Doctoral dissertation, Sindh Agriculture University, Tando Jam).
12. Boland, G.J. and Hall, R. (1994). Index of plant hosts of sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16: 93-108. [DOI:10.1080/07060669409500766]
13. Bolton, M.D., Thomma, B.P. and Nelson, B.D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7: 1-16. [DOI:10.1111/j.1364-3703.2005.00316.x]
14. Breseghello, F. and Sorrells, M. E. (2006). Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46: 1323-1330. [DOI:10.2135/cropsci2005.09-0305]
15. Çevik, F., Göksu, M.Z.L., Derici, O.B. and Fındık, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152: 309-317. [DOI:10.1007/s10661-008-0317-3]
16. Chang, C. and Janzen, H.H. (1996). Long-term fate of nitrogen from annual feedlot manure applications. Journal of Environmental Quality, 25: 785-790. [DOI:10.2134/jeq1996.00472425002500040019x]
17. Chapman, J.M., Cooper, J.D., Todd, J.A. and Clayton, D.G. (2003). Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Human Heredity, 56(1-3): 18-31. [DOI:10.1159/000073729]
18. Dadras, A.R., Sabouri, H., Nejad, G.M., Sabouri, A. and Shoai-Deylami, M. (2014). Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Molecular Biology Reports, 41: 3317-3329. [DOI:10.1007/s11033-014-3194-6]
19. Darvishzadeh, R. (2016). Genetic variability, structure analysis, and association mapping of resistance to broomrape (Orobanche aegyptiaca Pers.) in tobacco. Journal of Agricultural Science and Technology, 18: 1407-1418.
20. Davar, R., Darvishzadeh, R. and Majd, A. (2011). Genotype-isolate interaction for resistance to Sclerotinia sclerotiorum in sunflower. Phytopathologia Mediterranea, 50(3): 442-449.
21. Davar, R., Darvishzadeh, R., Majd, A., Ghosta, Y. and Sarrafi, A. (2010). QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathologia Mediterranea, 49: 330-341.
22. Duan, Y., Ge, C., Zhang, X., Wang, J. and Zhou, M. (2014). A rapid detection method for the plant pathogen Sclerotinia sclerotiorum based on loop-mediated isothermal amplification (LAMP). Australasian Plant Pathology, 43: 61-66. [DOI:10.1007/s13313-013-0239-6]
23. Ersoz, E.S., Yu, J. and Buckler, E.S. (2007). Applications of linkage disequilibrium and association mapping in crop plants. In Genomics-assisted crop improvement (pp. 97-119). Springer Netherlands. [DOI:10.1007/978-1-4020-6295-7_5]
24. Evanno, G., Regnaut, S. and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611-2620. [DOI:10.1111/j.1365-294X.2005.02553.x]
25. FAO. (2016). Food and Agriculture Organization. Available online at://faostat.fao.org/.
26. Farrokhi, J., Darvishzadeh, R., Hatami Maleki, H., Nasseri, L.A. and Asghari, F. (2015). Identification of microsatellite markers linked to morphological and biochemical traits in Iranian native apple (Malus × domestica Borkh) cultivars. Journal or Agricultural Biotechnology, 6(4): 117-128.
27. Farrokhi, E., Khodabandeh, A., Daneshian, J. and Rhmanpour, S. (2010). Farrokh Hybrid, a pioneer of the new generation of Iranian sunflower hybrids. Third International Seminar on Oilseeds and Edible Oils, Tehran, Center for Knowledge Coordination and Oil Seeds Industry.
28. Fusari, C.M., Di Rienzo, J.A., Troglia, C., Nishinakamasu, V., Moreno, M.V., Maringolo, C. and Heinz, R. (2012). Association mapping in sunflower for sclerotinia head rot resistance. BMC Plant Biology, 12: 1. [DOI:10.1186/1471-2229-12-93]
29. Gaetán, S. and Madia, M. (2005). Occurrence of stem rot on canola caused by Sclerotinia sclerotiorum in Argentina. Plant Disease, 89(5): 530. [DOI:10.1094/PD-89-0530B]
30. Gomes, L.C., Di Benedetto, G. and Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13: 589-598. [DOI:10.1038/ncb2220]
31. Gupta, P.K., Rustgi, S. and Kulwal, P.L. (2005). Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 57: 461-485. [DOI:10.1007/s11103-005-0257-z]
32. Hahn, V. (2002). Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crop Research, 77: 153-159. [DOI:10.1016/S0378-4290(02)00082-5]
33. Hansen, M., Kraft, T., Ganestam, S., Saell, T. and Nilsson, N.O. (2001). Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genetical Research, 77(01): 61-66. [DOI:10.1017/S0016672300004857]
34. Hittalmani, S., Huang, N., Courtois, B., Venuprasad, R., Shashidhar, H.E., Zhuang, J.Y. and Srivantaneeyakul, S. (2003). Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia. Theoretical and Applied Genetics, 107: 679-690. [DOI:10.1007/s00122-003-1269-1]
35. Iquira, E., Humira, S. and François, B. (2015). Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biology, 15: 5. [DOI:10.1186/s12870-014-0408-y]
36. Jannatdoust, M., Darvishzadeh, R., Ziaeifard, R., Azizi, H. and Gholinezhad, E. (2015). Association mapping for grain quality related traits in confectionery sunflower (Helianthus annuus L.) using retrotransposon markers under normal and drought stress conditions. Crop Biotechnology, 9: 15-28.
37. Jun, T.H., Van, K., Kim, M.Y., Lee, S.H. and Walker, D.R. (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 62: 179-191. [DOI:10.1007/s10681-007-9491-6]
38. Kearsey, M.J. and Pooni, H.S. (1996). The genetical analysis of quantitative traits. 1st edition. Chapman & Hall, London, 381 pp. [DOI:10.1007/978-1-4899-4441-2_1]
39. Kraakman, A.T., Niks, R.E., Van den Berg, P.M., Stam, P. and Van Eeuwijk, F.A. (2004). Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 168(1): 435-446. [DOI:10.1534/genetics.104.026831]
40. Leonards-Schippers, C., Gieffers, W., Schäfer-Pregl, R., Ritter, E., Knapp, S.J., Salamini, F. and Gebhardt, C. (1994). Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics, 137: 67-77.
41. Mannai, Y.E., Shehzad, T. and Okuno, K. (2011). Variation in flowering time in sorghum core collection and mapping of QTLs controlling flowering time by association analysis. Genetic Resources and Crop Evolution, 58: 983-989. [DOI:10.1007/s10722-011-9737-y]
42. Micic, Z., Hahn, V., Bauer, E., Schon, C.C., Knapp, J., Tang, S. and Melchinger, A.E. (2004). QTL mapping of Sclerotinia midstalk-rot resistance in sunflower. Theoretical and Applied Genetics, 109: 1474-1484. [DOI:10.1007/s00122-004-1764-z]
43. Micic, Z., Hahn, V., Bauer, E., Schon, C.C., and Melchinger, A. E. (2005a). QTL mapping of resistance to Sclerotinia mid-stalk rot in RIL of sunflower population NDBLOSsel×CM625. Theoretical and Applied Genetics, 110: 1490-1498. [DOI:10.1007/s00122-005-1984-x]
44. Micic, Z., Hahn, V., Bauer, E., Melchinger, A.E., Knapp, S.J., Tang, S., and Schön, C.C. (2005b). Identification and validation of QTL for Sclerotinia mid-stalk rot resistance in sunflower by selective genotyping. Theoretical and Applied Genetics, 111: 233-242. [DOI:10.1007/s00122-005-2004-x]
45. Mestries, E., Gentzbittel, L., de Labrouhe, D.T., Nicolas, P. and Vear, F. (1998). Analyses of quantitative trait loci associated with resistance to shape Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. Molecular Breeding, 4: 215-226. [DOI:10.1023/A:1009694626992]
46. Moose, S.P. and Mumm, R.H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147(3): 969-977. [DOI:10.1104/pp.108.118232]
47. Musa-Khalifani, Kh. (2016). Identification of molecular markers associated with resistance to Sclerotinia disease in sunflower using association-based approach. M. Sc. Thesis, Department of Plant Breeding and Biotecnology, Faculty of Agriculture, Urmia University.
48. Myles, S., Peiffer, J., Brown, P.J., Ersoz, E.S., Zhang, Z., Costich, D.E. and Buckler, E.S. (2009). Association mapping: critical considerations shift from genotyping to experimental design. The Plant Cell, 21(8): 2194-2202. [DOI:10.1105/tpc.109.068437]
49. Nordborg, M. and Tavare, S. (2002). Linkage disequilibrium: what history has to tell us? Trends in Genetics, 18(2): 83-90. [DOI:10.1016/S0168-9525(02)02557-X]
50. Oraguzie, N.C., Phillip, L.W., Rikkerink, E.H.A. and Silva, H.N.D. (2007). Linkage Disequilibrium: in Association Mapping in Plants. Springer. New York. NY. pp: 11- 39. [DOI:10.1007/978-0-387-36011-9_2]
51. Poormahamad Kiani, S., Talia P., Maury P., Grieu, P., Heinz, R., Perrault, A. (2007). Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Science, 172: 773-787. [DOI:10.1016/j.plantsci.2006.12.007]
52. Price, K. and Colhoun, J. (1975). A study of variability of isolates of Sclerotinia sclerotiorum (Lib) de Bary from different hosts. Journal of Phytopathology, 83: 159-166. [DOI:10.1111/j.1439-0434.1975.tb03527.x]
53. Pritchard, J.K., Stephens, M., Rosenberg, N.A. and Donnelly, P. (2000). Association mapping in structured populations. The American Journal of Human Genetics, 67: 170-181. [DOI:10.1086/302959]
54. Pritchard, J. K., Wen, X. and Falush, D. (2007). Documentation for structure software: Version 2.2. Department of Human Genetics, University of Chicago; Department of Statistics, University of Oxford.
55. Remington, D.L., Thornsberry, J.M., Matsuoka, Y., Wilson, L.M., Whitt, S.R., Doebley, J., Kresovich, S., Goodman, M.M. and Buckler, E.S. (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS, 98: 11479-11484. [DOI:10.1073/pnas.201394398]
56. Rönicke, S., Hahn, V., Vogler, A. and Friedt, W. (2005). Quantitative trait loci analysis of resistance to Sclerotinia sclerotiorum in sunflower. Phytopathology, 95: 834-839. [DOI:10.1094/PHYTO-95-0834]
57. Roy, J.K., Bandopadhyay, R., Rustgi, S., Balyan, H.S. and Gupta, P.K. (2006). Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Current Science, 90: 5-10.
58. Saeed, A. and Darvishzadeh, R. (2017). Association analysis of biotic and abiotic stresses resistance in chickpea (Cicer spp.) using AFLP markers. Biotechnology & Biotechnological Equipment, 31(4): 698-708. [DOI:10.1080/13102818.2017.1333455]
59. Saeed, A., Darvishzadeh, R. and Basirnia, A. (2013). Simple sequence repeat markers associated with agro-morphological traits in chickpea (Cicer arietinum L.). Zem-Agri, 100: 433-440. [DOI:10.13080/z-a.2013.100.055]
60. Saharan, G. S. and Mehta, N. (2008). Economic importance. In: Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Springer, India, pp. 41-45. [DOI:10.1007/978-1-4020-8408-9_4]
61. Sahranavard-Azartamar, F., Ghadimzadeh, M. and Darvishzadeh, R. (2016). Genetic diversity and structure analysis of oily sunflower (Helianthus annuus L.) based on microsatellit markers. Plant Genetic Researches, 2(2): 15-32. [DOI:10.29252/pgr.2.2.15]
62. Sahranavard-Azartamar, F., Darvishzadeh, R., Ghadimzadeh, M., Azizi, H. and Aboulghasemi, Z. (2015). Identification of SSR loci related to some important agromorphological traits in different oily sunflower (Helianthus annuus L.) lines using association mapping. Crop Biotechnology, 10: 73-87.
63. Shaaf, S., Bihamta, M.R., Taleai, A.R., Mohammadi, V. and kaliliyan, B. (2012). Association analysis of single nucleotide variation in sunflower time genes PpH1, HvCO1 and HvGI in the barly. Modern Genetics, 7: 179-191.
64. Sharfun-Nahar, S., Mushtaq, M. and Hashmi, M. H. (2005). Seed-borne mycoflora of sunflower (Helianthus annuus L.). Pakistan Journal of Botany, 37: 451-457.
65. Shehzad, T., Iwata, H. and Okuno, K. (2009). Genome-wide association mapping of quantitative traits in sorghum (Sorghum bicolor (L.) Moench) by using multiple models. Breeding Science, 59: 217- 227. [DOI:10.1270/jsbbs.59.217]
66. Slatkin, M. (1994). An exact test for neutrality based on the Ewens snampling distribution. Genetic Research, 64: 71-74. [DOI:10.1017/S0016672300032560]
67. Soleimani Gezeljeh, A., Darvishzadeh, R., Ebrahimi, A. and Bihamta, M.R. (2018). Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunflower (Helianthus annuus L.) under natural and water-limited states. Journal of Genetics, [DOI:10.1007/s12041-018-0901-4.]
68. Stich, B., Melchinger, A.E., Piepho, H.P., Hamrit, S., Schipprack, W., Maurer, H.P. and Reif, J.C. (2007). Potential causes of linkage disequilibrium in a European maize breeding program investigated with computer simulations. Theoretical and Applied Genetics, 115: 529-536. [DOI:10.1007/s00122-007-0586-1]
69. Stich, B., Maurer, H.P., Melchinger, A.E., Frisch, M., Heckenberger, M., Van der Voort, J.R. and Reif, J.C. (2006). Comparison of linkage disequilibrium in elite European maize inbred lines using AFLP and SSR markers. Molecular Breeding, 17(3): 217-226. [DOI:10.1007/s11032-005-5296-2]
70. Stich, B., Melchinger, A.E., Frisch, M., Maurer, H.P., Heckenberger, M. and Reif, J.C. (2005). Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theoretical and Applied Genetics, 111: 723-730. [DOI:10.1007/s00122-005-2057-x]
71. Sun, J., Guo, N., Lei, J., Li, L., Hu, G. and Xing, H. (2014). Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.). Journal of Genetics, 93: 355-363. [DOI:10.1007/s12041-014-0383-y]
72. Talukder, Z.I., Hulke, B.S., Qi, L., Scheffler, B.E., Pegadaraju, V., McPhee, K. and Gulya, T.J. (2014). Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs. Theoretical and Applied Genetics, 127: 193-209. [DOI:10.1007/s00122-013-2210-x]
73. Talukder, Z.I., Tharreau, D. and Price, A.H. (2004). Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytologist, 162(1): 197-209. [DOI:10.1111/j.1469-8137.2004.01010.x]
74. Tang S., Yu J.K., Slabaugh M.B., Shintani D.K. and Knapp S.J. (2002). Simple sequence repeat map of the sunflower genome. Theoretical and Applied Genetics, 105: 1124-1136. [DOI:10.1007/s00122-002-0989-y]
75. Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D. and Buckler, E.S. (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 28: 286-289. [DOI:10.1038/90135]
76. Tuberosa, R., Salvi, S., Sanguineti, M. C., Landi, P., Maccaferri, M. and Conti, S. (2002). Mapping QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. Annals of Botany, 89: 941-963. [DOI:10.1093/aob/mcf134]
77. Young, N.D. (1996). QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology, 34(1): 479-501. [DOI:10.1146/annurev.phyto.34.1.479]
78. Yu, J., Pressoir, G., Briggs, W.H., Bi, I.V., Yamasaki, M., Doebley, J.F. and Kresovich, S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38: 203-208. [DOI:10.1038/ng1702]
79. Yue, B., Radi, S.A., Vick, B.A., Cai, X., Tang, S., Knapp, S.J., Gulya, T.J., Miller, J.F. and Hu, J. (2008). Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. Phytopathology, 98: 926-931. [DOI:10.1094/PHYTO-98-8-0926]
80. Vanitha, J., Manivannan, N. and Chandirakala, R. (2014). Qualitative trait loci analysis for seed yield and component traits in sunflower. African Journal of Biotechnology, 13: 754-761 [DOI:10.5897/AJB2013.12325]
81. Weiss, K.M. and Clark, A.G. (2002). Linkage disequilibrium and the mapping of complex human traits. Trends in Genetics, 18(1): 19-24. [DOI:10.1016/S0168-9525(01)02550-1]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousa Khalifani K, Darvishzadeh R, Abrinbana M, Nouri A. Identification of Microsatellite Markers Linked with Genomic Regions Involved in Resistance to Basal Stem Rot Disease Isolates in Oily Sunflower (Helianthus annuus L.) under Controlled Conditions. pgr 2019; 5 (2) :1-16
URL: http://pgr.lu.ac.ir/article-1-126-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 5, Issue 2 (2019) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657