Volume 3, Issue 2 (6-2021)                   JAD 2021, 3(2): 42-56 | Back to browse issues page


XML Print


1- Department of Biology, R. R. Lalan College, Bhuj 370001, Gujarat, India , pranavpandya1@yahoo.com
2- Deptartment of Earth and Environment Science, KSKV Kachchh Universiyt, Bhuj 370001, Gujarat, India
3- Department of Biology, R. R. Lalan College, Bhuj 370001, Gujarat, India
Abstract:   (9407 Views)
Natural and human disturbances can affect population and community assemblages in complex ways. The present study was carried out from June 2019 to January 2020, along the Northern Gulf of Kachchh (can also be spelled as Kutch), western India wherein an effort was made to investigate the intertidal assemblage at three distinct but spatially closely located stations (Kathda, Mandvi, and Modhva). The efforts were also made to correlate anthropogenic effects with intertidal assemblage. The Mandvi station served as an anthropogenically active area whereas the other two remained as control stations with minimal disturbance. Replicate quadrat samples on fixed transect lines and wet biomass analyses were carried out for three seasons. In total, 43 species, viz. Mollusca (21), Crustacea (12), Polychaeta (7), Nemertea (1), and fishes (2) were recorded. Cumulatively, during pre-monsoon, post-monsoon and winter, overall population densities ranged from 0 to 999 individuals/m2; biomass from 0 to 899 g/m2, and the Simpson evenness index score remained between 0.15 to 0.89. Overall, high density and diversity were observed during winter (December 2019 and January 2020) with the maximum number of two Mollusc species Umbonium vestiarium and Cerethidia cingulata. High densities were observed at the Modhva station followed by Kathda and Mandvi stations. Relatively lower intertidal macrofaunal diversity and density were clearly observed at Mandvi station which is a famous tourist destination. Comparative data recorded in the present study can serve as a vital baseline and can be a part of future monitoring processes, especially at anthropogenically influenced stations.
Full-Text [PDF 1932 kb]   (2615 Downloads)    
Type of Study: Original Research Article | Subject: Ecological Diversity
Received: 2020/12/11 | Accepted: 2021/04/4 | Published: 2021/06/30

References
1. Ansari, Z., Ingole, B., Banerjee, G., and Parulekar, A. H. (1986). Spatial and temporal changes in benthic macrofauna from Mandovi and Zuari estuaries of Goa, West coast of India. Indian Journal of Marine Sciences, 15 (4): 223–229. http://nopr.niscair.res.in/handle/123456789/38698 [DOI]
2. Apte, D. (2015). Sea shells of India. Bombay Natural History Society, Oxford University Press, Delhi, India. 216 pp.
3. Barnes, B. V., Zak, D. R., Denton, S. R., Spurr, S. H. (1998). Forest ecology, Fourth Edition, John Wiley and Sons, Inc, USA. 773 pp.
4. Barragán, J. M. and de Andrés, M. (2015). Analysis and trends of the world’s coastal cities and agglomerations. Ocean and Coastal Management. 114: 11–20. https://doi.org/10.1016/j.ocecoaman.2015.06.004 [DOI]
5. Bessa, F., Scapini, F., Cabrini, T. and Cardoso, R. (2017). Behavioural responses of talitrid amphipods to recreational pressures on oceanic tropical beaches with contrasting extension. Journal of Experimental Marine Biology and Ecology, 486: 170-177. https://doi.org/10.1016/j.jembe.2016.10.007 [DOI]
6. Bhadja, P., Poriya, P., Kundu, R. (2014). Community Structure and Distribution Pattern of Intertidal Invertebrate Macrofauna at Some Anthropogenically Influenced Coasts of Kathiawar Peninsula (India). Advances in Ecology, 2014: 1–11. https://doi.org/10.1155/2014/547395 [DOI]
7. Bijleveld, A. I., Compton, T. J., Klunder, L., Holthuijsen, S., Ten Horn, J., Koolhaas, A., Dekinga, A., Van Der Meer, J. and Van Der Veer, H. W. (2018). Presence-absence of marine macrozoobenthos does not generally predict abundance and biomass. Scientific Reports, 8: 1–12. https://doi.org/10.1038/s41598-018-21285-1 [DOI]
8. Bloch, C. P. and Klingbeil, B. T. (2016). Anthropogenic factors and habitat complexity influence biodiversity but wave exposure drives species turnover of a subtropical rocky inter-tidal metacommunity. Marine Ecology, 37: 64–76. https://doi.org/10.1111/maec.12250 [DOI]
9. Cai Lizhe, Hwang Jiang-Shiou, Hans-Uwe Dahms, Fu Su-Jing, Chen Xin-Wei, and Chen Wu. (2013) Does high organic matter content affect polychaete assemblages in Shenzhen Bay mudflat, China? Journal of Marine Science and Technology, 21 (Suppl): 274–284. https://doi.org/10.6119/JMST-013-1223-5 [DOI]
10. Cai Lizhe, Tam, N., Teresa W., Ma Li, Gao Y.and Yuk-Shan W. (2003) Using benthic macrofauna to assess environmental quality of four intertidals in Hong Kong and Shenzhen Coast. Acta Oceanologica Sinica, 22 (2): 309–319.
11. Chhapgar, B. F. (1957). On the marine crabs (Decapoda, Brachyura) of Bombay State. Part II. Journal of Bombay Natural History Society, 54 (3): 503–549.
12. Cimon, S. and Cusson, M. (2018). Impact of multiple disturbances and stress on the temporal trajectories and resilience of benthic intertidal communities. Ecosphere, 9 (10): e02467. https://doi.org/10.1002/ecs2.2467 [DOI]
13. Crowe, T., Thompson, R. C., Bray, S. and Hawkins, S. (2000). Impacts of anthropogenic stress on rocky intertidal communities. Journal of Aquatic Ecosystem Stress and Recovery, 7 (4): 273–297. https://doi.org/10.1023/A:1009911928100 [DOI]
14. Day, J. H. (1967). A monograph of the polychaeta of Southern Africa. British Museum (Natural History) Publication, London, England. 878 pp.
15. Department of Tourism (2010). Tourism development at Kachchh Mandvi, Gujarat (RFQ Report). Department of Tourism. Government of Gujarat.
16. Dixit, A. M., Kumar, P., Kumar, L., Pathak, K. D. and Patel, M. I. (2010). Economic Valuation of Coral Reef Systems in the Gulf of Kachchh. Final Report. World Bank aided Integrated Coastal Zone Management (ICZM) Project. Submitted to Gujarat Ecology Commission. 158 pp.
17. Fletcher, H. and Frid, C. L. J. (1996). Impact and management of visitor pressure on rocky intertidal algal communities. Aquatic Conservation: Marine and Freshwater Ecosystems, 6: 287–297. https://doi.org/10.1002/(SICI)1099-0755(199612)6:4<287::AID-AQC199>3.0.CO;2-Q [DOI]
18. Gray, J. and Elliott, M. (2009). Ecology of Marine Sediments: From Science to Management. Second Edition, Oxford University Press, England. 256 pp.
19. Gujarat Institute of Desert Ecology (GUIDE) (2005). Marine monitoring of Kharo creek., Report submitted to Ministry of Environment and Forest, New Delhi.
20. Gunderson, A. R., Armstrong, E. J., Jonathon, H. and Stillman, J. H. (2016). Multiple stressors in a changing World: the need for an improved perspective on physiological responses to the dynamic marine environment. Annual Review of Marine Science, 8 (1): 357–378. https://doi.org/10.1146/annurev-marine-122414-033953 [DOI]
21. Halpern, B., Walbridge, S., Selkoe, K., Kappel, Carrie., Micheli, F., D'Agrosa, C., Bruno, J., Casey, K., Ebert, C., Fox, H., Fujita, R., Heinemann, D., Lenihan, H., Madin, E., Perry, M., Selig, E., Spalding, M., Steneck, R. and Watson, R., (2008). A global map of human impact on marine ecosystems. Science (New York, N.Y.): 319: 948–952. https://doi.org/10.1126/science.1149345 [DOI]
22. Ingole, B. S., Periasamy, R. and Kalyan, D. (2016). Macrobenthic community structure response to coastal hypoxia off Southeastern Arabian Sea. Journal of Coastal Zone Management, 19 (4):436. https://doi:10.4172/2473-3350.1000436 [DOI]
23. Ingole, B. S., Sabyasachi, S., Sanitha S., Singh, R. and Mandar, N. (2010). Macrofaunal community structure in the western Indian continental margin including the oxygen minimum zone. Marine Ecology, 31 (1): 148–166. https://doi.org/10.1111/j.1439-0485.2009.00356.x [DOI]
24. Karbassi, A., Abdollahzadeh, E. M, Attaran-Fariman, G., Nazariha, M. and Mazaheri-Assadi, M. (2017). Predicting the distribution of harmful algal bloom (HAB) in the coastal area of Oman Sea. Nature Environment and Pollution Technology, 16 (3): 753–764.
25. Kardani, H. K., Mankodi, P. C. and Thivakaran, G. A. (2014). Diversity and distribution of gastropods of intertidal region of northern gulf of Kachchh, Gujarat, India. Ecology, Environment and Conservation, 20 (1): 105–110.
26. Keough, M. J. and Quinn., G. P. (1998). Effects of periodic disturbances from trampling on rocky intertidal algal beds. Ecological Applications, 8 (1): 141–161.
27. Kon, K., Kurokura, H. and Tongnunui, P. (2011). Influence of a microhabitat on the structuring of the benthic macrofaunal community in a mangrove forest. Hydrobiologia, 671 (1): 205. https://doi.org/10.1007/s10750-011-0718-0 [DOI]
28. Leung, J. Y. (2015). Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: Implication for the impact of restoration and afforestation. Global Ecology and Conservation, 4: 423–433. https://doi.org/10.1016/j.gecco.2015.08.005 [DOI]
29. Leung, J. Y. and Tam, N. F. (2013). Influence of plantation of an exotic mangrove species, Sonneratia caseolaris (L.) Engl., on macrobenthic infaunal community in Futian Mangrove National Nature Reserve, China. Journal of Experimental Marine Biology and Ecology, 448: 1–9. https://doi.org/10.1016/j.jembe.2013.06.006 [DOI]
30. Levin, L. A. and Talley, T. S. (2002). Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecological Applications, 12 (6): 1785–1802. https://doi.org/10.1890/1051-0761(2002)012[1785:NAMSOH]2.0.CO;2 [DOI]
31. Liess, M., Foit, K., Knillmann, Saskia, K., Schäfer, R. B. and Liess, H. (2016). Predicting the synergy of multiple stress effects. Scientific Reports, 6 (1): 32965. https://doi.org/10.1038/srep32965 [DOI]
32. Machado, P., Suciu, M., Costa, L. and Zalmon, I. (2017). Tourism impacts on benthic communities of sandy beaches. Marine Ecology, 38 (4). 1–11. https://doi.org/10.1111/maec.12440 [DOI]
33. Mariana, F. and Sergio, R. (2009). Effects of human trampling on a rocky shore fauna on the Sao Paulo coast, south-eastern Brazil. Brazilian journal of Biology, 69 (4). 993–999. https://doi.org/10.1590/S1519-69842009000500003 [DOI]
34. McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A., Joyce, F. H. and Warner, R. R. (2015). Marine defaunation: animal loss in the global ocean. Science (New York), 347 (6219): 1255641. https://doi.org/10.1126/science.1255641 [DOI]
35. Mendez, M. M., Livore, J. P., Calcagno, J. A. and Bigatti, G. (2017). Effects of recreational activities on Patagonian rocky shores. Marine and Environmental Research, 130: 213–220. https://doi.org/10.1016/j.marenvres.2017.07.023 [DOI]
36. Mouchet, M., Villéger, S., Mason, W. H. and Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24 (4): 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x [DOI]
37. Murphy, G. E. and Romanuk, T. N. (2014). A meta analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4 (1): 91–103. https://doi.org/10.1002/ece3.9 [DOI]
38. Ng, P. K. L., Guinot, D. and Peter D. (2008). Systema Brachyurorum: Part I. An annotated checklist of extant Brachyuran crabs of the world. The Raffles Bulletin of Zoology, 17: 1–296.
39. Pandya, P. J. (2011). Benthic community structure of Mahi River estuary with special reference to animal sediment relationship. Ph.D. thesis, Maharaja Sayajirao University of Baroda, India. http://hdl.handle.net/10603/60133 [DOI]
40. Pandya, P. J. and Vachhrajani, K. D. (2010). Spatial Distribution and substratum Preference of the Brachyuran Crab, Macrophthalmus depressus (Decapoda, Ocypodidae) along the Lower Estuarine Mudflat of Mahi River, Gujarat, India. Crustaceana, 83: 1055–1067. https://doi.org/10.1163/001121610X521235 [DOI]
41. Portugal, A. B., Carvalho, F. L., de Macedo Carneiro, P. B., Rossi, S. and de Oliveira Soares, M. (2016). Increased anthropogenic pressure decreases species richness in tropical intertidal reefs. Marine and Environmental Research, 120: 44–54. https://doi.org/ 10.1016/j.marenvres.2016.07.005 [DOI]
42. Povey, A. and Keough, M. J. (1991). Effects of trampling on plant and animal populations on rocky shores. Oikos, 61 (3): 355–368. https://doi.org/10.2307/3545243 [DOI]
43. Quadros, G., Sukumaran, S. and Athalye, R. (2009). Impact of the changing ecology on intertidal polychaetes in an anthropogenically stressed tropical creek, India. Aquatic Ecology, 43 (4). 977–985. https://doi.org/10.1007/s10452-009-9229-8 [DOI]
44. Raja, S. Ajmal Khan, P. S. Lyla and S. Manokaran, 2014. Diversity of Macrofauna from Continental Shelf off Singarayakonda (Southeast Coast of India). Pakistan Journal of Biological Sciences, 17: 641-649. https://doi.org/10.3923/pjbs.2014.641.649 [DOI]
45. Sale, P. F., Agardy, T., Ainsworth, C. H., Feist, B. E., Bell, J. D., Christie, P., Hoegh-Guldberg, O., Mumby, P. J., Feary, D. A., Saunders, M. I., Daw, T. M., Foale, S. J., Levin, P. S., Lindeman, K. C., Lorenzen, K., Pomeroy, R. S., Allison, E. H., Bradbury, R., Corrin, J., Edwards, A., Obura, D. O., Sadovy De Mitcheson, Y. J., Samoilys, M. A. and Sheppard, C. R. C., (2014). Transforming management of tropical coastal seas to cope with challenges of the 21st century. Marine Pollution Bulletin, 85 (1): 8–23. https://doi.org/10.1016/j.marpolbul.2014.06.005 [DOI]
46. Salem, M. A., Geest, M., Piersma, T. and Saoud, Y. (2014). Seasonal changes in mollusc abundance in a tropical intertidal ecosystem, Banc d Arguin (Mauritania): Testing the shorebird depletion hypothesis. Estuarine Coastal and Shelf Science, 13: 26–34. https://doi.org/10.1016/j.ecss.2013.11.009 [DOI]
47. Saravanakumar, A., Serebiah, J. S., Thivakaran, G. A. and Rajkumar, M. (2007). Benthic macrofaunal assemblage in the arid zone mangroves of Gulf of Kachchh, Gujarat. Journal of Ocean University of China, 6 (3): 303–309. https://doi.org/10.1007/s11802-007-0303-3 [DOI]
48. Schiel, D. R. and Taylor, D. I. (1999). Effects of trampling on a rocky intertidal algal assemblage in southern New Zealand. Journal of Experimental Marine Biology and Ecology, 235 (2): 213–235. https://doi.org/10.1016/S0022-0981(98)00170-1 [DOI]
49. Sheridan, P. F. (1992). Comparative habitat utilization by estuarine macrofauna within the mangrove ecosystem of Rookery Bay, Florida. Bulletin of Marine Science, 50 (1): 21–39.
50. Shukla, P. K. (2014). A study of tourism in Gujarat a geographical perspective. Ph.D. thesis, The Maharaja Sayajirao University of Baroda, Vadodara, India. 366 pp.
51. Simpson, E. H. (1949). Measurement of diversity. Nature. 163: 688. https://doi.org/doi:10.1038/163688a0 [DOI]
52. Singh, H. S., Pandey, C. N., Yennawar, P., Asari, R. J., Patel, B. H., Tatu, K. and Raval, B. R. (2004). The Marine National Park and Sanctuary in the Gulf of Kachchh - A comprehensive study on biodiversity and management issues. GEER Foundation, Gandhinagar, 347 pp.
53. Thivakaran, G. A. and Sawale, A. K. (2016). Mangrove macrofaunal diversity and community structure in Mundra and Kharo, Kachchh, Gujarat. Indian Journal of Geo-Marine Science, 45 (11): 1584–1592.
54. Tsutsumi, H. (1990). Population persistence of Capitella sp. (Polychaeta; Capitellidae) on a mud flat subject to environmental disturbance by organic enrichment. Marine Ecology Progress Series, 63 (2): 147–156. https://doi.org/10.3354/meps063147 [DOI]
55. Van De Werfhorst, L. C. and Pearse, J. S. (2007). Trampling in the rocky intertidal of central California: a follow-up study. Bulletin of Marine Science, 81 (2): 245–254. https://www.ingentaconnect.com/content/umrsmas/bullmar/2007/00000081/00000002/art00011 [DOI]
56. Virnstein, R. W. (1987). Sea grass-associated invertebrate communities of the southeastern USA: a review. Florida Marine Research Publications Number 42: 89–116.
57. Zavala, R. and Dávila, B. (2016). Macrofauna, In: Kennish, M. J. (Ed.), Encyclopedia of Estuaries. Encyclopaedia of Earth Sciences Series. Springer, Dordrecht, Germany. https://doi.org/10.1007/978-94-017-8801-4_261 [DOI]
58. Zhang, A., Yuan, X., Yang, X., Shao, S., Li, J. and Ding, D. (2016). Temporal and spatial distributions of intertidal macrobenthos in the sand flats of the Shuangtaizi Estuary, the Bohai Sea in China. Acta Ecologica Sinica, 36 (3): 172–179. https://doi.org/10.1016/j.chnaes.2016.04.003 [DOI]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.